
Qubit Reset and Refresh:
A Gamechanger for Random Number Generation

Julie Germain
 Computer Science and Engineering

University of North Texas
 Denton, TX, USA

JulieGermain@my.unt.edu

Ram Dantu
 Computer Science and Engineering

University of North Texas
 Denton, TX, USA

Ram.Dantu@unt.edu

Mark Thompson
 Computer Science and Engineering

 University of North Texas
 Denton, TX, USA

 Mark.Thompson2@unt.edu

ABSTRACT
Generation of random binary numbers for cryptographic use is
often addressed using pseudorandom number generating functions
in compilers and specialized cryptographic packages. Using the
IBM’s Qiskit reset functionality, we were able to implement a
straight-forward in-line Python function that returns a list of
quantum-generated random numbers, by creating and executing a
circuit on IBM quantum systems.

We successfully created a list of 1000 1024-bit binary random
numbers as well as a list of 40,000 25-bit binary random numbers
for randomness testing, using the NIST Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic
Applications. The quantum-generated random data we tested
showed very strong randomness, according to the NIST suite.

Previously, IBM’s quantum implementation required a single qubit
for each bit of data generated in a circuit, making generation of large
random numbers impractical. IBM’s addition of the reset instruction
eliminates this restriction and allows for the creation of functions
that can generate a larger quantity of data-bit output, using only a
small number of qubits.

CCS CONCEPTS
•Computer systems organization~Architectures~Other
architectures~Quantum computing. •Theory of
computation~Randomness, geometry and discrete structures

KEYWORDS
Quantum Computing, Random Number Generator, QRNG, Qiskit

ACM Reference Format:
Julie Germain, Ram Dantu, & Mark Thompson. 2022. Qubit Reset and
Refresh: A Gamechanger for Random Number Generation. In Proceedings of
the Twelveth ACM Conference on Data and Application Security and Privacy
(CODASPY ’22), April 24–27, 2022, Baltimore, MD, USA. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3508398.3519364

1 INTRODUCTION AND MOTIVATION
Using the current generation of quantum computing we
demonstrate how it can serve as a complement to classical
computing. In the same way we might offload certain functions to
a graphics accelerator or a tensor processor, we can offload targeted
processes to quantum computers where they excel. In this work,
we have implemented a quantum random number generator
function via Python, highlighting the potential of cloud-based
quantum computing for use by programs primarily written for
classical computers.

Dedicated Quantum Random Number Generator (QRNG) hardware
and cloud-based services exist [2], representing quantum
technology’s superior randomness, but they require specialized
hardware or services, making it impractical for some uses. Using
our technique with IBM’s reset instruction, cryptographers will be
able to call a simple inline Python function to generate random
binary data, with access to only general-purpose cloud-based
quantum hardware.

Our new qrandom function generates a list of quantum-generated
random numbers of the bit length and quantity desired by the user.
Using Reuse and Reset [4], a single circuit is created and customized
to generate a single random number of the bit length desired,
without being limited by the number of qubits available in the
quantum computer. We created a multi-phase circuit to generate a
single random binary number of the desired length to be run on
machines with no more than seven qubits. By executing the
resulting circuit the specified number of times as a batch job, a list
of random numbers is generated. The function then returns the
binary random numbers to the user as a list of ASCII strings.

2 CONTRIBUTIONS
§ Innovative use of reset and refresh in the quantum hardware

§ Validation of Randomness using NIST criteria

§ A novel inline QRNG python function for cryptographers for
generation of the keys, nonce, and other applications

§ Theoretical proof that random number is not biased either
towards 0 or 1

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author(s).
CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA.
© 2022 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-9220-4/22/04.
https://doi.org/10.1145/3508398.3519364

Poster Session II CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

367

3 METHODOLOGY
Quantum circuits are created via a Python program using the IBM
Qiskit SDK implementation. For this project, our function qrandom
builds a customized circuit, based on the length and quantity of
random numbers desired.

• One Random number of user specified length is created each
time the circuit is executed

• The quantity of random numbers requested are generated by
executing the circuit multiple times, once per random
number

• Reset and Reuse enable multi-phase implementation,
allowing a larger number of output random bits than qubits
available [4],

• Output of the qrandom function is a list of random numbers
returned as ASCII binary strings

A simple circuit with just one phase can be used to generate random
numbers up to 7-bits in length. Figure 1 shows such a circuit to
generate 4-bit random number. For our 4-qubit circuit represented
here, we see each qubit is initialized (i.e., reset) to a value of 0, its
ground state. To each qubit we then apply a single Hadamard gate
(H) that places the qubit into superposition, a unique state in
quantum physics that can maintain several separate quantum states
simultaneously. When a Hadamard gate is applied to a qubit with
a value of zero, its state is unbiased such that that the probability of
measuring a value of zero or one is equal and thus purely random.
In the circuit diagram, we see each qubit being measured and stored
to a numbered classical bit in the order measured. After execution,
the data stored in the classical bits is retrieved and returned to the
user.

Figure 1: Qiskit circuit to generate a 4-bit random number in
a single round (each qubit only measured once)

In comparison, we observe a 9-bit random number circuit
implemented in three phases in Figure 2. Like the earlier single-
phase circuit, we see the same gates used to generate just three
random bits, using three qubits. Those three qubits are then reset to
their ground state of zero for use in subsequent phases.

Figure 2: Qiskit circuit to generate a 9-bit random number in
three phases (each qubit measured 3 times)

After the completion of all three phases, the classical bits numbered
from 0-8 will store the 9-bit random number that results.

Most quantum algorithms examples implemented using Qiskit will
output their results as a sorted list (the default) to produce a
statistical histogram of results. In contrast, to generate lists of
random numbers, sorting the data results in a loss of some aspects
of its randomness, resulting in poor NIST test results. To overcome
this issue, the data was read from memory prior to sorting.

The qrandom function created for this project has the signature
qrandom(num_bits,num_random) where:

• num_bits is the length of random number required

• num_random is the quantity of random numbers the user
wants implemented.

The output of the function is a list of ASCII binary number strings.

4 RANDOMNESS OF QUANTUM-GENERATED
NUMBERS
The underlying quantum physics provides randomness as one of its
most basic functions. Generating a random bit requires placing a
qubit into superposition, after which its measured value will result
in zero or one with equal probability.

Quantum state and the application of quantum gates in a circuit can
be described using linear algebra and Dirac notation [3]. The
Hadamard gate is defined by the following matrix:

 (1)

In Dirac notation, applying a Hadamard gate to either a value of 0
or 1 will result in the probability of ½. We also show a bloch sphere
visualization of the qubit state of 0 and the qubit state after the
Hadamard is applied, lying equally between a 0 and 1 value :

 (2)

 (3)

Therefore, we can be assured that whether the value starts at zero
or one, applying a Hadamard gate puts the qubit into superposition
and the probability of measuring a zero or one will be ½.

5 RANDOMNESS TESTING
The NIST Random Number testing suite [1] was used to compare
our quantum-generated random numbers to those from a standard
python random function, the PyCrytpodome random function, and
NIST test data for pi. 40,000 samples of 25-bit length random
numbers were generated from each source and saved off as ASCII

Poster Session II CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

368

text files for use in the NIST suite of tests. The data test size was
selected to be at least 1,000,000 bits in length, allowing us to select
a stream length of 10,000 with 100-bit streams, greater than the 55
required of some tests. Our data set size of 1,000,000 bits was
adequate to perform all tests except Rank, Linear Complexity, Non-
Overlapping, Overlapping, Random Excursions and Random
Excursion variants tests.

Key results from the NIST test suite are the Proportion (the number
of our 100 samples that meet the criteria for randomness) and the
P-Value (representing the distribution of statistical outcomes where
perfectly evenly distributed would result in a value of 1).

Table 1: NIST Random Number Test results Comparison
The results are shown in Table 1. We have color-coded these
results, to assist in visualizing the comparable test success of each
data source. The NIST provided pi data shows as random in the tests
performed, though pi is not truly random due to its predictable
placement of each number. The pi and the quantum random data
sets were the most successful, in terms of the proportion of
statistically random results (100% in 6 tests each).

Figure 3: Quantum Random NIST test P-Values

Figure 3 shows a summary of the NIST random number test results,
showing the Proportion of 100 samples that were statistically
classified as Random and the P-Value (where one represents the
optimal statistical distribution of the results).

6 CONCLUSIONS
The utilization of quantum computers for focused functions within
a classical program has near-term applicability with the current
generation of cloud-based quantum computing technology.

 We have shown that in-line quantum functions, are practical to use
for random number generation. They produce improved results,
per the NIST test suite, over traditional random implementations in
Python and PyCryptodome and comparable results to the NIST test
data set based on pi.

The IBM Reset functionality, allowed the output of a large number
of data bits with only a modest quantity of qubits, opening the door
to more expanded and efficient use of the quantum computer
resources.

ACKNOWLEDGMENTS
We acknowledge the use of IBM Quantum services for this work.
The views expressed are those of the authors, and do not reflect
the official policy or position of IBM or the IBM Quantum team.

In this paper we used ibm_perth, which is one of the IBM
Quantum Falcon Processors.

We thank National Security Agency for the partial support
through grants: H98230-20-1-0329, H98230-20-1-0403, H98230-20-
1-0414, and H98230-21-1-0262

REFERENCES
[1] NIST Special Publication 800-22: A statistical test suite for random and

pseudorandom number generators for cryptographic applications. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
22r1a.pdf

[2] Jacak, M.M., Jóźwiak, P., Niemczuk, J. et al. Quantum generators of random
numbers. Sci Rep 11, 16108 (2021). https://doi.org/10.1038/s41598-021-95388-7

[3] Lam, R., The Math Behind Quantum Computing – Qubits and Superposition,
(2019) https://medium.datadriveninvestor.com/the-math-behind-quantum-
computing-qubits-and-superposition-f7a871668125

[4] Nation, P., Johnson, B., How to Measure and Reset a Qubit in the Middle of a
Circuit Execution, 2021 https://www.ibm.com/blogs/research/2021/02/quantum-
mid-circuit-measurement/

P-Value Proportion P-Value Proportion P-Value Proportion P-Value Proportion

Frequency 0.924076 99 0.595549 99 0.262249 98 0.153763 100

BlockFrequency 0.759756 100 0.224821 99 0.699313 100 0.514124 98

CumulativeSums 0.383827 99 0.883171 99 0.319084 100 0.946308 100

CumulativeSums 0.616305 99 0.102526 98 0.514124 99 0.657933 100

Runs 0.637119 99 0.935716 99 0.657933 100 0.037566 100

LongestRun 0.075719 100 0.678686 97 0.978072 100 0.319084 100

FFT 0.455937 99 0.494392 98 0.162606 100 0.037566 98

Serial 0.798139 99 0.534146 100 0.289667 98 0.637119 99

Serial 0.883171 99 0.699313 98 0.108791 100 0.062821 100

PyRandom CryptoRandom Data.pi qRandom

Poster Session II CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

369

