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ABSTRACT 
Generation of random binary numbers for cryptographic use is 
often addressed using pseudorandom number generating functions 
in compilers and specialized cryptographic packages.  Using the 
IBM’s Qiskit reset functionality, we were able to implement a 
straight-forward in-line Python function that returns a list of 
quantum-generated random numbers, by creating and executing a 
circuit on IBM quantum systems.   

We successfully created a list of 1000 1024-bit binary random 
numbers as well as a list of 40,000 25-bit binary random numbers 
for randomness testing, using the NIST Statistical Test Suite for 
Random and Pseudorandom Number Generators for Cryptographic 
Applications.  The quantum-generated random data we tested 
showed very strong randomness, according to the NIST suite. 

Previously, IBM’s quantum implementation required a single qubit 
for each bit of data generated in a circuit, making generation of large 
random numbers impractical. IBM’s addition of the reset instruction 
eliminates this restriction and allows for the creation of functions 
that can generate a larger  quantity of data-bit output, using only a 
small number of qubits.   
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•Computer systems organization~Architectures~Other 
architectures~Quantum computing.    •Theory of 
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1  INTRODUCTION AND MOTIVATION 
Using the current generation of quantum computing we 
demonstrate how it can serve as a complement to classical 
computing.  In the same way we might offload certain functions to 
a graphics accelerator or a tensor processor, we can offload targeted 
processes to quantum computers where they excel.  In this work, 
we have implemented a quantum random number generator 
function via Python, highlighting the potential of cloud-based 
quantum computing for use by programs primarily written for 
classical computers. 

Dedicated Quantum Random Number Generator (QRNG) hardware 
and cloud-based services exist [2], representing quantum 
technology’s superior randomness, but they require specialized 
hardware or services, making it impractical for some uses. Using 
our technique with IBM’s reset instruction, cryptographers will be 
able to call a simple inline Python function to generate random 
binary data, with access to only general-purpose cloud-based 
quantum hardware. 

Our new qrandom function generates a list of quantum-generated 
random numbers of the bit length and quantity desired by the user. 
Using Reuse and Reset [4], a single circuit is created and customized 
to generate a single random number of the bit length desired, 
without being limited by the number of qubits available in the 
quantum computer. We created a multi-phase circuit to generate a 
single random binary number of the desired length to be run on 
machines with no more than seven qubits. By executing the 
resulting circuit the specified number of times as a batch job, a list 
of random numbers is generated.  The function then returns the 
binary random numbers to the user as a list of ASCII strings. 

2  CONTRIBUTIONS 
§ Innovative use of reset and refresh in the quantum hardware 

§ Validation of Randomness using NIST criteria 

§ A novel inline QRNG python function for cryptographers for 
generation of the keys, nonce, and other applications 

§ Theoretical proof that random number is not biased either 
towards 0 or 1 
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3  METHODOLOGY 
Quantum circuits are created via a Python program using the IBM 
Qiskit SDK implementation. For this project, our function qrandom 
builds a customized circuit, based on the length and quantity of 
random numbers desired.  

• One Random number of user specified length is created each 
time the circuit is executed  

• The quantity of random numbers requested are generated by 
executing the  circuit multiple times, once per random 
number 

• Reset and Reuse enable multi-phase implementation, 
allowing a larger number of output random bits than qubits 
available [4], 

• Output of the qrandom function is a list of random numbers 
returned as ASCII binary strings 

A simple circuit with just one phase can be used to generate random 
numbers up to 7-bits in length. Figure 1 shows such a circuit to 
generate 4-bit random number. For our 4-qubit circuit represented 
here, we see each qubit is initialized (i.e., reset) to a value of 0, its 
ground state. To each qubit we then apply a single Hadamard gate 
(H) that places the qubit into superposition, a unique state in 
quantum physics that can maintain several separate quantum states 
simultaneously.  When a Hadamard gate is applied to a qubit with 
a value of zero, its state is unbiased such that that the probability of 
measuring a value of zero or one is equal and thus purely random.  
In the circuit diagram, we see each qubit being measured and stored 
to a numbered classical bit in the order measured. After execution, 
the data stored in the classical bits is retrieved and returned to the 
user.  

 
Figure 1: Qiskit circuit to generate a 4-bit random number in 
a single round (each qubit only measured once) 
 
In comparison, we observe a 9-bit random number circuit 
implemented in three phases in Figure 2.  Like the earlier single-
phase circuit, we see the same gates used to generate just three 
random bits, using three qubits. Those three qubits are then reset to 
their ground state of zero for use in subsequent phases.  
 

 
Figure 2: Qiskit circuit to generate a 9-bit random number in 
three phases (each qubit measured 3 times) 
 
After the completion of all three phases, the classical bits numbered 
from 0-8 will store the 9-bit random number that results. 

Most quantum algorithms examples implemented using Qiskit will 
output their results as a sorted list (the default) to produce a 
statistical histogram of results. In contrast, to generate lists of 
random numbers, sorting the data results in a loss of some aspects 
of its randomness, resulting in poor NIST test results. To overcome 
this issue, the data was read from memory prior to sorting. 

The qrandom function created for this project has the signature 
qrandom(num_bits,num_random) where: 

• num_bits is the length of random number required 

• num_random is the quantity of random numbers the user 
wants implemented.  

The output of the function is a list of ASCII binary number strings. 

4  RANDOMNESS OF QUANTUM-GENERATED 
NUMBERS 
The underlying quantum physics provides randomness as one of its 
most basic functions. Generating a random bit requires placing a 
qubit into superposition, after which its measured value will result 
in zero or one with equal probability.  

Quantum state and the application of quantum gates in a circuit can 
be described using linear algebra and Dirac notation [3]. The 
Hadamard gate is defined by the following matrix:  

   (1) 

In Dirac notation, applying a Hadamard gate to either a value of 0 
or 1 will result in the probability of ½.  We also show a bloch sphere 
visualization of the qubit state of 0 and the qubit state after the 
Hadamard is applied, lying equally between a 0 and 1 value :   

    (2) 

    (3) 

Therefore, we can be assured that whether the value starts at zero 
or one, applying a Hadamard gate puts the qubit into superposition 
and the probability of measuring a zero or one will be ½. 

5  RANDOMNESS TESTING 
The NIST Random Number testing suite [1] was used to compare 
our quantum-generated random numbers to those from a standard 
python random function, the PyCrytpodome random function, and 
NIST test data for pi.  40,000 samples of 25-bit length random 
numbers were generated from each source and saved off as ASCII 
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text files for use in the NIST suite of tests.  The data test size was 
selected to be at least 1,000,000 bits in length, allowing us to select 
a stream length of 10,000 with 100-bit streams,  greater than the 55 
required of some tests. Our data set size of 1,000,000 bits was 
adequate to perform all tests except Rank, Linear Complexity, Non-
Overlapping, Overlapping, Random Excursions and Random 
Excursion variants tests. 

Key results from the NIST test suite are the Proportion (the number 
of our 100 samples that meet the criteria for randomness) and the 
P-Value (representing the distribution of statistical outcomes where 
perfectly evenly distributed would result in a value of 1). 

 

 

Table 1: NIST Random Number Test results Comparison 
The results are shown in Table 1.  We have color-coded these 
results, to assist in visualizing the comparable test success of each 
data source. The NIST provided pi data shows as random in the tests 
performed, though pi is not truly random due to its predictable 
placement of each number.  The pi and the quantum random data 
sets were the most successful, in terms of the proportion of 
statistically random results (100% in 6 tests each).   

 

Figure 3: Quantum Random NIST test P-Values 

Figure 3 shows a summary of the NIST random number test results, 
showing the Proportion of 100 samples that were statistically 
classified as Random and the P-Value (where one represents the 
optimal statistical distribution of the results). 

6  CONCLUSIONS 
The utilization of quantum computers for focused functions within 
a classical program has near-term applicability with the current 
generation of cloud-based quantum computing technology.  

 We have shown that in-line quantum functions, are practical to use 
for random number generation.  They produce improved results, 
per the NIST test suite, over traditional random implementations in 
Python and PyCryptodome and comparable results to the NIST test 
data set based on pi.   

The IBM Reset functionality, allowed the output of a large number 
of data bits with only a modest quantity of qubits, opening the door 
to more expanded and efficient use of the quantum computer 
resources. 
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P-Value Proportion P-Value Proportion P-Value Proportion P-Value Proportion

Frequency 0.924076 99 0.595549 99 0.262249 98 0.153763 100

BlockFrequency 0.759756 100 0.224821 99 0.699313 100 0.514124 98

CumulativeSums 0.383827 99 0.883171 99 0.319084 100 0.946308 100

CumulativeSums 0.616305 99 0.102526 98 0.514124 99 0.657933 100

Runs 0.637119 99 0.935716 99 0.657933 100 0.037566 100

LongestRun 0.075719 100 0.678686 97 0.978072 100 0.319084 100

FFT 0.455937 99 0.494392 98 0.162606 100 0.037566 98

Serial 0.798139 99 0.534146 100 0.289667 98 0.637119 99

Serial 0.883171 99 0.699313 98 0.108791 100 0.062821 100

PyRandom CryptoRandom Data.pi qRandom
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