
Verifying OAuth Implementations Through Encrypted Network
Analysis

Josh Talkington
JoshTalkington@my.unt.edu
University of North Texas

Department of Computer Science
Denton, Texas

Ram Dantu
ram.dantu@unt.edu

University of North Texas
Department of Computer Science

Denton, Texas

Kirill Morozov
kirill.morozov@unt.edu
University of North Texas

Department of Computer Science
Denton, Texas

ABSTRACT
Verifying protocol implementations via application analysis can be
cumbersome. Rapid development cycles of both the protocol and
applications that use it can hinder up-to-date analysis. A better
approach is to use formal models to characterize the applications
platform and then verify the protocol through analysis of the net-
work traffic tied to the models. To test this method, the popular
protocol OAuth is considered. Currently, formal models of OAuth
do not take into consideration the mobile environment, and im-
plementation verification is largely based on code analysis. Our
preliminary results are two fold; we sketch an extension to a formal
model that incorporates the specifics of the Android platform and
classify OAuth device types using machine learning on encrypted
VPN traffic.

CCS CONCEPTS
•Networks→ Protocol correctness;Application layer proto-
cols; • Security and privacy → Formal security models; Malware
and its mitigation;

KEYWORDS
Authorization; Android; Formal Models; OAuth; Network Analysis

ACM Reference Format:
Josh Talkington, Ram Dantu, and Kirill Morozov. 2019. Verifying OAuth
Implementations Through Encrypted Network Analysis. In The 24th ACM
Symposium on Access Control Models and Technologies (SACMAT ’19), June
3–6, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3322431.3326449

1 INTRODUCTION
Protocols can be hard to implement. Developers might not realize
the importance of certain features, or find the protocol hard to
follow . This can lead to vulnerabilities in the applications them-
selves, and subject the service they use to abuse. Given the massive
amounts of user generated data, authorization is a property that
is at the forefront of this atmosphere. One popular protocol that
handles this interaction is Open Authorization (OAuth). OAuth has
been that subject of many conversations that revolve around its

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6753-0/19/06.
https://doi.org/10.1145/3322431.3326449

various, and often vulnerable, implementations. Developers often
confuse its role as an authorization protocol with an authentication
protocol, or they use the wrong operation mode by not enabling
important extensions [1]. This has promoted a response from the
community for techniques to verify the implementations.

There have been several works in this regard. Efforts like Proverif
[8] and those mentioned in [10] rely on formal methods. The work
of Wang et al assess vulnerability in OAuth implementations but
does so through code analysis [11]. While these methods have their
advantages, they can lack agility in dealing with rapid development
cycles and can require large resources of time and computation.
We approach the problem from a network perspective. Network
traffic analysis is attractive because it abstracts out many of the
limits of other techniques. You do not need deep access to the
source code, the same techniques can be applied across device
types, protocol extensions, and implementation details. However,
one hurdle to get over is the use of traffic encryption. This makes
network traffic harder as it masks the data from analysis. To get
over this challenge, we propose leveraging the formal protocol
model to increase our ability to successfully analyze the encrypted
traffic. What is presented here is a brief extension to an OAuth
formal model that characterizes the Android platform, results from
OAuth device fingerprinting.

The rest of this paper is organized as follows: in section 2 we
briefly summarize OAuth, in section 3 we describe a baseline ap-
proach to OAuth device detection, in section 4 we sketch an Android
Model extension, and in section 5 we conclude.

2 OAUTH
Open Authorization (OAuth) is a protocol that allows third party
access to a users resources at another location [6]. It represents a
mechanism which is commonly invoked by the prompts like "Login
with Facebook" or "Login with Google". This protocol has several
entities like the identity provider (IdP), the Relying Party (RP), and
the web browser. The IdP manages users’ credentials and private
resources. The RP or client is a third party that is supposed to gain
access to your data at the IdP. The browser is just a typical web
browser that allows the user to visit the RP and IdP.

OAuth has various modes of operation: client credentials, re-
source owner password credentials, implicit, and authorization
code mode. All modes have their uses, but the authorization code
mode is the most encompassing one and hence it will be used as
the example for the rest of this paper. This mode has the following
steps: The user first visits the RP website where they can login
with an existing identity. When they click on the "Login with..."
button, they are redirected to the IdP. At the IdP, they login and

Poster SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

227

https://doi.org/10.1145/3322431.3326449
https://doi.org/10.1145/3322431.3326449
https://doi.org/10.1145/3322431.3326449
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3322431.3326449&domain=pdf&date_stamp=2019-05-28


Figure 1: OAuth in the web vs. the mobile environment – bypassing HTTPS context on the mobile.

grant resource access to the RP. Once the user is verified with a
user name and password, they are redirected to the RP with a code.
This code is taken by the RP and exchanged for a token. The RP
is supposed to access your resources (such as a profile) with this
access token.

This base protocol works for the general web, but is not enough
for the mobile phone. Figure 1 shows the difference in configuration
of the entities in the web system as compared to that in a mobile
phone. On the web, both the RP and the IdP are protected by the
HTTPS protocol, confirming the identity of the sender (according
to the certificate authority) and protecting the messages from tam-
pering. There exists no comparable mechanism that is present at
the operating system level. While an interception style attack is
generally not attractive, this allows any application installed on the
device to send messages to the RP. There are many more attacks on
OAuth such as phishing, covert redirects, and repackaging. Lu et al.
published a comprehensive overview of vulnerabilities related to
single sign on, particularly on Android [9].

3 DETECTING DEVICES ON ENCRYPTED
NETWORK

This section describes a brief experiment in which we classify net-
work devices based on their type (desktop or rasberry pi) while
they sign in with OAuth. Traffic will be collected from networked
devices trying to access an external service over a VPN. They will
act as a user requesting access to a resource. Their network traffic
will be fed into the Weka program to perform machine learning
classification [5].

The network contains a Raspberry Pi (model B) [4], a desktop
with browser, and a proxy server connected via a home network
router. The desktop and proxy server are virtual machines. The
Raspberry Pi is running Rasbian, a Debian based OS. They connect
via OAuth to an external web sever. The desktop acts as a control,
allowing the traffic analysis to be compared to a standard OAuth
scenario. It is running Ubuntu with the Chrome web browser. It
will be run through the Chrome development tools backend server
to make OAuth requests by loading crafted URLs using python.

The proxy will run Ubuntu server with the necessary network
routes to collect all network traffic. The incoming traffic is from
the Pi and virtual desktop and is encrypted with a Virtual Private

Network (VPN). Before it leaves the network, the proxy collects the
VPN packets for inspection. Each set of packets will be combined
and labeled with contextual information like what step of OAuth is
occurring. The traffic is then decrypted an sent externally as regular
Internet traffic.

All of the end devices connect to the service that is external to the
network above. This service will support OAuth for authorization.
Devices will authenticate with the service using one of the OAuth
flows defined in [6]. They will then request access to a resource, a
profile for instance.

3.1 Features
Tomeasure the system, a set of features will be derived from the net-
work trace. For each OAuth run, there will be a number of packets.
These packets will contain attributes, such as packet length, that
will be analyzed to find averages, standard deviations, etc. Zhioua
et al used interesting features in their TOR browser fingerprinting
[12], and will be used as inspiration in these choices.

Currently, the list of features contains the following:
Entropy measures the Shannon entropy of the payload
Complexity is approximated via payload compression
Average Length of the packet
Average Time delta is the average time between packets
Pkt Count is the amount of packets
Figure 2 shows distinct clusters when visualizing the data. The

y-axis is the Shannon entropy listed above with the x-axis of each
graph being one of the features listed earlier. The clustering of
data comes from the fact that the different devices utilize different
configurations and values during OAuth, this effects measurement
such as packet count. These preliminary results show the feasibility
in detecting the different device types when they use OAuth over
an encrypted network and provided a baseline for improvement.
Using a formal model will help us describe, in detail, the OAuth
characteristics of the devices involved and we can then use these
to produce new features.

4 FORMAL MODELING
Up until now, modeling the security and safety of mobile phones
has received little attention, to the best of our knowledge. Khan

Poster SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

228



Figure 2: Differentiating device types when signing in to
OAuth over a VPN

et al. model Android to further reason about application crashes
[7]. Smith and Coglio proposes several features in their model such
as activity history, event history, and memory stack [10]. These
approaches are all static in nature as they do not consider future
capabilities, like software updates, meaning when a new adversarial
vulnerability arises, the model might completely break down.

Fett et al. [3] introduced a model that showed OAuth secure with
respect to authentication and authorization. What this model did
not account for is the mobile native app and its protocol extensions
[2]. This was due to the inability of the model to accurately charac-
terize the new type of domain and the adversaries that existed in it.
The RP is now on the phone, directly interacting with the user, not
the browser. It is subjected to Android interprocess communication
with intents, as shown in Figure 1.

To get a sense of Fett et al’s methodology and to provide a tem-
plate, we can look at the definition provided for the Relying Parties’s
initial state. Definition 42 from [3] describes the RPs initial state:

Definition 42. A state s ∈ Z r of an RP r is a term of the form
⟨DNSAddress, idps, serviceTokens, loginSessions, keyMapping, sslkeys,
pendingDNS, pendingRequests, corrupt⟩ where DNSAddress ∈ IPs,
idps ∈ [Doms ×T N ] is a directory of IdP registration records, ser-
viceTokens ∈ [N × T N ], loginSessions ∈ [N × T N ] is a dictionary
of login session records, keyMapping ∈ [S × N ], sslkeys = sslkeysr,
pendingDNS ∈ [N × T N ], oendingRequests∈ [N × T N ], corrupt
∈ T N .

An initial state sr0 of r is a state of r with sr0 .idps being a dictio-
nary that maps each domain of all identity providers i to an IdP reg-
istration record for i at r, sr0 .serviceTokens = s

r
0 .loginSessions =

{}, sr0 .corrupt = ⊥, and sr0 .KeyMapping is the same as the keymap-
ping for browsers above.

Looking at this definition of an initial state, we can see that it
is built from ground terms akin to a web browser. Following the ex-
ample above, we can sketch a initial state definition for an Android
application.

Definition 1. an intent is a term in the form ⟨action, category, data,
scheme⟩ Where action ∈ A is the set of all actions for an activity,
category ∈ C is a category for an intent, data ∈ D represents the
data contained in the intent, scheme ∈ S serves as the intent scheme
chosen by the developer initiated at registration.

Definition 2. a view is a term in the form ⟨rid, onClickListeners⟩
Where rid ∈ R is the set of all ids for an activity category ∈ C is a
category for an intent.
Definition 3. eventHistory is modeled via Androids hierarchical
state machine
Definition 4. A state s ∈ Z of an Android application A is of the
form ⟨intents, views, listeners, eventHistory⟩ where intents ∈ I , views
∈ V , listeners ∈ L, and eventHistory ∈ E.

5 CONCLUSIONS AND FUTUREWORK
Presented here is motivation for new types of protocol implemen-
tation verification that can deal with changing atmosphere, a pre-
liminary experiment showing how to differentiate device types on
an encrypted network and sketching a formal model extension in
order to produce new features for our network analysis.

Combining the formal model with the network analysis allows
for a different approach to detecting flaws in OAuth implementa-
tions and even the standard itself. Future work would include fully
extending the model to encompass all the features of an Android
application, aiding in analysis. Then applying this technique across
a data set of common applications.

REFERENCES
[1] Eric Y. Chen, Yutong Pei, Shuo Chen, Yuan Tian, Robert Kotcher, and Patrick

Tague. 2014. OAuth Demystified for Mobile Application Developers. ACM Press,
892–903. https://doi.org/10.1145/2660267.2660323

[2] William Denniss and John Bradley. 2017. OAuth 2.0 for Native Apps. Number
8252 in Request for Comments. RFC Editor. https://doi.org/10.17487/RFC8252
Published: RFC 8252.

[3] Daniel Fett, Ralf KÃĳsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16). ACM, New York, NY, USA,
1204–1215. https://doi.org/10.1145/2976749.2978385

[4] Raspberry Pi Foundation. [n. d.]. Raspberry Pi âĂŤ Teach, Learn, and Make with
Raspberry Pi. ([n. d.]). https://www.raspberrypi.org

[5] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA Data Mining Software: An Update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18. https://doi.org/10.1145/1656274.1656278

[6] Dick Hardt. 2012. The OAuth 2.0 authorization framework. (2012). http:
//tools.ietf.org/html/rfc6749

[7] Wilayat Khan, Habib Ullah, Aakash Ahmad, Khalid Sultan, Abdullah J. Alzahrani,
Sultan Daud Khan, Mohammad Alhumaid, and Sultan Abdulaziz. 2018. CrashSafe:
a formal model for proving crash-safety of Android applications. Human-centric
Computing and Information Sciences 8, 1 (Dec. 2018). https://doi.org/10.1186/
s13673-018-0144-7

[8] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. 2017. Automated
Verification for Secure Messaging Protocols and Their Implementations: A Sym-
bolic and Computational Approach. IEEE, 435–450. https://doi.org/10.1109/
EuroSP.2017.38

[9] Xing Liu, Jiqiang Liu, Wei Wang, and Sencun Zhu. 2018. Android single sign-on
security: Issues, taxonomy and directions. Future Generation Computer Systems
89 (2018), 402 – 420. https://doi.org/10.1016/j.future.2018.06.049

[10] Eric Smith and Alessandro Coglio. 2016. Android PlatformModeling and Android
App Verification in the ACL2 Theorem Prover. In Verified Software: Theories,
Tools, and Experiments, Arie Gurfinkel and Sanjit A. Seshia (Eds.). Vol. 9593.
Springer International Publishing, Cham, 183–201. https://doi.org/10.1007/
978-3-319-29613-5_11

[11] Hui Wang, Yuanyuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and
Dawu Gu. 2015. Vulnerability Assessment of OAuth Implementations in Android
Applications. ACM Press, 61–70. https://doi.org/10.1145/2818000.2818024

[12] Sami Zhioua. 2015. The web browser factor in traffic analysis attacks. Security &
Communication Networks 8, 18 (Dec. 2015), 4227–4241. https://doi.org/10.1002/
sec.1338

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under awards 1241768 and 1637291.

Poster SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

229

https://doi.org/10.1145/2660267.2660323
https://doi.org/10.17487/RFC8252
https://doi.org/10.1145/2976749.2978385
https://www.raspberrypi.org
https://doi.org/10.1145/1656274.1656278
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749
https://doi.org/10.1186/s13673-018-0144-7
https://doi.org/10.1186/s13673-018-0144-7
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1016/j.future.2018.06.049
https://doi.org/10.1007/978-3-319-29613-5_11
https://doi.org/10.1007/978-3-319-29613-5_11
https://doi.org/10.1145/2818000.2818024
https://doi.org/10.1002/sec.1338
https://doi.org/10.1002/sec.1338

	Abstract
	1 Introduction
	2 Oauth
	3 Detecting Devices on Encrypted Network
	3.1 Features

	4 Formal Modeling
	5 Conclusions and Future Work
	References
	Acknowledgments



