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Abstract—Distributed denial of service (DDoS) attacks con-
tinue to plague businesses and consumers alike, and due to
an ever-growing digital landscape, these attacks are expected
to grow in size and complexity. Current mitigation techniques
ranging from hours to days are completely unacceptable given
the cost and inconvenience these attacks place in our society.
This paper puts forth three feedback control mechanisms to
minimize the effects of DDoS attacks on real-time traffic.
The first, called differentiated services code point (DSCP)
Markdown, is a passive approach that uses micro firewall rules
to lower the priority of out-of-profile packets while a second
mechanism actively drops the out-of-profile packets based on
rate and burst size parameters. The third technique uses
parallel links when feedback is applied to stabilize the network
after an attack has been detected. Results from all three
techniques have shown to have a positive effect on real-time
traffic. The first two approaches were able to stabilize network
traffic in real-time, while the parallel links technique resulted
in a slight delay. We validate the feedback mechanisms with
our model that was generated using the system identification
technique. Results show that the feedback architecture provides
a fit accuracy with positive results.

Keywords-Resilient, DDoS, real-time services, micro-firewall,
feedback control, QoS, DSCP;

I. INTRODUCTION

Distributed denial of service (DDoS) attacks continue to

be problematic for websites and service providers and thanks

to the Internet of Things (IoT) supporting a rapidly growing

number of network-connected devices from refrigerators to

thermostats, and so on, this trend is expected to continue [1].

During the second quarter of 2017, for example, the number

of DDoS attacks increased by 28 percent, with the United

States being targeted over 122.4 million times [2]. One high

profile DDoS attack during this period involved Microsoft’s

instant messaging service Skype where many users lost

connectivity to the application and were unable to send or

receive messages for several days with lingering connectivity

issues. In response to this attack, Stephanie Weagle, VP of

Corero Network Security, stated that “proactive, automated

protection is required to keep the internet-connected business

available in the face of DDoS attacks” [3]. In order to

mitigate these growing DDoS attacks, we need to be able to

identify and respond to malicious traffic immediately.

A. Motivation

Clearly, mitigating the effects of a DDoS attack in a few

hours, much less in a few days, is unacceptable given the

monetary impact on businesses and consumers each and

every DDoS attack has. The average damage of a single

DDoS attack on business has now increased to more than

$2.5 million per incident [4] while the cost to launch a DDoS

attack ranges from a measly $2,000 to $7,275 [5]. What’s

more is that DDoS attacks are quickly evolving and taking

a life of their own as they are growing larger and more

complex than ever. In addition, there is a burgeoning market

for DDoS-as-a-Service as the sales of botnets, and DDoS

tools have grown into a sizable business [1].

In our previous work, we developed a robust feedback

design to maintain the stability of the network despite

attacks using non-real-time (NRT) traffic [6]. We presented

a passive approach to minimize the impact of DDoS on

web services. As evidenced by the results, the feedback

mechanism provided a positive effect on the network and

stabilized the network in less than 60 seconds. The results in

[6] also show a fit accuracy of approximately 75% after the

feedback was provided, bringing back the unstable network

to a stable state.

In this paper, we consider real-time traffic, such as stream-

ing video, which is very sensitive to delay, packet loss,

and jitter. Slight disruptions in the traffic can deteriorate

streaming video. Understanding this unclear nature of real-

time traffic and generating a corresponding model can be

very challenging. A simple model is not adequate to identify

the dynamics of such traffic. We are thus motivated to look

to system identification [7] techniques to design and analyze

a robust model. We select autoregressive-moving average

with exogenous terms model to identify the network. We

then validate the model with our robust feedback strategies.

We use a micro-firewall rule that identifies and prioritizes

the legitimate traffic. The firewall rule acts as feedback

controller that is used to detect anomalies in the quality

of the video. The importance of this mechanism is that it

provides a real-time and scalable solution to deliver seamless

video streaming in spite an attack.
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Figure 1. Experimental Network Topology: Network Elements Connected
in Parallel

B. Related Work

A feedback control approach has been applied to a wide

range of network systems [8]. There has been a significant

amount of research on performance modeling of video

streaming [7], [9]–[13]. A feedback control architecture was

designed by Luca De Cicco et al., [14] for adaptive live

video streaming. They propose a quality adaption controller

for live adaptive video streaming. In their proposed design,

the controller is fed with the length of the sender buffer

as input. The sender buffer selects the video quality. The

authors claim that their architecture is able to control the

video level with a transient time of 30 seconds.

Chao Chen et al., [15] presented a Hammerstein-Wiener

model for predicting the time-varying subjective quality

(TVSQ) of rate-adaptive videos transmitted over HTTP. The

authors claim that their model predicts TVSQ for the HTTP-

based video streaming in real time. They also claim that their

model achieves an outage rate of less than 3.4%. A non-

linear autoregressive model with exogenous outputs model

was proposed for the prediction of streaming video quality

of experience (QoE) in [16]. Their model is driven by 3

inputs – objective measure of video quality, rebuffering-

aware information and QoE memory descriptor.

Guibin Tian and Yong Liu [9] developed a video adaption

algorithm for Dynamic Adaptive Streaming over HTTP

(DASH). Their algorithms use client-side buffered video

time as the feedback signal. They use a PI controller driven

by deviation in buffered video time as the feedback signal.

These methods focus on maintaining the quality of the

video at the server-side or at the client-side. To the best

of our knowledge, the use of feedback control to mitigate

the effect of denial of service (DoS) attack has to be yet

explored for real-time traffic. Our approach has a solid de-

fense mechanism. The feedback mechanism implemented in

our approach stabilizes the network and makes the network

function robustly despite the attack. Also, we prove that the

QoS of the video remains the same even after the network

is disrupted.

II. ARCHITECTURE

A. Network Topology

We implement the same network topology used in [6].

Specifically, we implement a network connected in parallel

using eight Cisco Catalyst devices configured to use the

Open Shortest Path First (OSPF) protocol as shown in Fig.

1., with the default topology supporting one link R1-R2-R3-

R4 connected in series. When our feedback mechanism is

applied, the full network of three parallel links, each com-

prised of four routers connected in series, become enabled to

respond to disruptions or failures in the network. Each link

is configured to share the load equally, with the R4 router

utilizing the load-balance feature to distribute the packets

based on the destination address.

B. Client

We use the VideoLAN client (VLC) media player [17]

to view the streaming videos. Using the option to stream

video from the network, the streaming server’s network IP

is entered as the network URL. Multiple clients installed

with VLC media player were used to emulate real-world

scenarios.

C. Server

A standalone machine is used to host a video-streaming

server to deliver real-time video content over the Internet to

a user with a connected device. This system uses an Intel

Xenon processor (4 cores) with 32 GB RAM. H.264/MPEG-

4 AVC is used as the video coding format.

III. METHODOLOGY

A. System Identification

We use a black-box approach to identify and analyze the

dynamics of the network. We consider the entire network

made up of clients, a streaming server, and network devices

such as routers, switches, etc. We then model this network

using the system identification approach. This model de-

scribes the relationship between the measured input and

output.

Figure 2. Input-output profile. This data is used to model the network.
Figure (d), (e) (f) are input to the network and (a), (b) and (c) are the
outputs collected from the network

Real-time traffic, such as video streaming, is very sensitive

to jitter, delay, and packet loss. The inter-arrival time and the

rate of incoming packets directly affect the QoS metrics.

Hence, we select the average inter-arrival time and the rate
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of packets measured from the streaming server as inputs.

The input is represented as u(t). The outputs of the system,

represented as y(t), are the QoS metrics such as end-to-end

jitter, packet loss, and the rate of RTP packets between the

client-streaming server pair.

This Multi-Input Multi-Output (MIMO) black-box model

is described using the System Identification Toolbox present

in Matlab [18], which constructs an analytical model of the

dynamic network from the observed data. This system iden-

tification technique is widely used in control engineering.

We select an autoregressive moving average with ex-

ogenous terms (ARMAX) model structure to identify the

black-box model. ARMAX models are more flexible in

handling disturbances [8] and are encouraged to use for time

series modeling. This model structure is useful when load

disturbances are present in the input.

For parameter estimation of the ARMAX model, we

initially collect the input-output data for a sampling period

of one second, as shown in Fig. 2. This data is split into two

components; the first half used to generate the model and

last to validate the model. We then use the ARMAX model

order range and estimate the parameters using the System

Identification Toolbox. Using the fit criteria, we select the

best model and then validate it using a different set of the

data sample. The order of the model is selected based on

the fit accuracy.

Figure 3. ARMAX general architecture

The general difference equation of ARMAX structure as

shown in Fig. 3 is:

A(q)y(t) = B(q)u(t− nk) + C(q)e(t) (1)

where,

y(t)— Output at time t. The orders of the A, B,

and C polynomials are na, nb, and nc respectively

na - Number of poles.

nb - Number of zeroes plus 1.

nc - Number of C coefficients.

nk - Number of input samples that occur before the input

affects the output, also called the dead time in the system.

u(t - nk) . . . u(t - nk - nb + 1) - Previous and delayed

inputs on which the current output depends.

e(t - 1) . . . e(t - nc) - White-noise disturbance value.

The parameters na, nb, and nc are the orders of the

ARMAX model, and nk is the delay. q is the delay operator.

Using the ARMAX model jitter, the rate of RTP packets and

packet loss can be predicted in the near future. The jitter and

the arrival rate could be disturbed by the unpredictable cross

traffic, making it difficult to predict in the long term. The

ARMAX model generated is:

Model for output ”Rate”:
A(z)y1(t) = - Ai(z)yi(t) + B(z)u(t) + C(z)e1(t)

A(z) = 1 + 0.7408z−1 + 0.0006638z−2

A2(z) = 0.01649z−1 - 0.01265z−2

A3(z) = 0

B1(z) = 0.9892 + 0.7505z−1

B2(z) = -201.8 + 176.7z−1

B3(z) = -0.005782 + 0.006175z−1

C(z) = 1 + 0.8317z−1

Model for output ”Jitter”:
A(z)y2(t) = - Ai(z)yi(t) + B(z)u(t) + C(z)e2(t)

A(z) = 1 - 1.613z−1 + 0.7593z−2

A1(z) = 0.01649 z−1 - 0.01265 z−2

A3(z) = -7.007e−25 z−1 - 2.38e−25 z−2

B1(z) = -0.03476 - 0.04866z−1

B2(z) = 681.9 - 704.9z−1

B3(z) = 0.03101 - 0.02925z−1

C(z) = 1 + 0.03994z−1

The orders of na, nb, nc, and nk are 2, 2, 1, and 0,

respectively. The mean square error of the model is 0.8733.

The model yielded a fit accuracy of 98% and 78% for the

rate of packets and jitter outputs, respectively.

B. Generation of traffic

We use VLC media player to broadcast a stream. We

select the Real Time Streaming Protocol (RTSP) as the

streaming method with the H.264 video compression codec

and MP4 container format. The selected video was streamed

across the network shown in Fig. 1. The tcpdump packet

analyzer is used to sniff the packets at the server’s interface,

thus acting as the sensor. The data such as rate of packets,

inter-arrival time, etc. is collected periodically from the

packet capture. We use this collected data as input into our

model.

C. Feedback

We implement and analyze three different feedback mech-

anisms

1) DSCP Markdown: Differential Services Code Point

(DSCP) is simply a measure of the QoS level of a packet. As

a passive approach, this rule still allows the attack traffic but

lowers the priority of the out-of-profile packets by marking

them with a different QoS level and prioritizes the real-time

in-profile packets.
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2) Drop Out-of-Profile Traffic: As an active approach,

this rule drops out-of-profile traffic based on the rate and

burst size parameters. The rate defines the number of packets

removed at each fixed 0.125 milliseconds interval while the

burst size is the maximum number of packets that can be

held by the bucket to determine whether a packet is in profile

or out-of-profile.

3) Parallel links: In this passive approach, the attack

traffic is still allowed, but parallel links provide additional

bandwidth to stabilize the network when an attack is de-

tected.

Figure 4. Arrival rate of the DoS attack. This resembles a step input

IV. ANALYSIS OF RESULTS

The feedback to the network is applied by adding a micro-

firewall rule that contains two parameters rate and burst size

that control the operation of policing. These parameters are

selected based on the measured traffic rate. Two types of

policing actions can be performed if the traffic complies

with the specified profile. They are (i) dropping the out-of-

profile packet and (ii) marking down the DSCP value of the

packet to the one with a lower priority.

According to Cisco [19], QoS policing in the Catalyst

3550 device complies with the leaky bucket concept to

determine whether a packet is considered in-profile or out-

of-profile. That is, if there are enough tokens available for

a packet to be transmitted, it is considered to be in-profile;

otherwise, it is considered to be out-of-profile. In effect, the

number of packets proportional to the traffic packet sizes

is placed in a bucket so that at regular intervals, the tokens

derived from the configured rate are then removed. If there is

no place in the bucket to accommodate a packet, the packet is

considered as out-of-profile and is dropped or marked down.

These actions were applied dynamically to the network as a

feedback mechanism when the network moves to an unstable

state.

Figure 5. The experimental data does not follow the predicted data when
the network is under attack. The network is attacked at t = 80s. Due to the
attack, jitter and packet loss increase, resulting in the drop of the packet
rate.

Figure 6. (a) rate of packets, (b) jitter and (c) packet loss measured
from the RTP stream before and after the attack. The network is attacked
at t=85s. The feedback marking-down rule is applied at t = 145s to the
network under attack. We can observe, the model follows the data initially
when the network is in stable state. During the attack the predicted response
does not match with the experiment data. The model again closely follows
the data after the feedback is introduced. This shows that the network goes
to stable state from the unstable state after the feedback is applied.

A. Marking Down DSCP

The feedback rule applied in this scenario changes the

DSCP value of the out-of-profile traffic to a lower priority

and prioritizes the real-time traffic. Fig. 6. shows the output

collected from the network before and after the attack. The
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Figure 7. (a) rate of packets, (b) jitter and (c) packet loss measured from
the RTP stream before and after the attack. The network was attacked at
t=55s. The feedback applied which drops the traffic that does not comply
with the rule, is applied at t = 100s. The model closely follows the data
after the feedback is introduced and yields better fit. This shows that the
network goes to stable state from the unstable state after the feedback is
applied.

network is attacked after 85 seconds. The rate of attack is

approximately 530,000 packets per second as shown in Fig.

4. that resembles a step input. The attack is the disturbance

to the plant. The comparison of the 1-step predicted data

with the experimental data when the network under attack

is shown in Fig. 5.

From Fig. 6, we can observe that the jitter measured

has erratic spikes and is around 38 ms. This jitter value

causes severe deterioration in the quality of the video. Fig.

6. also shows the measured packet loss and the rate of RTP

packets before and after the attack, respectively. When the

network is under attack, the nodes appear congested. As a

result, several packets would be dropped, indicating that the

network is unstable. We can observe from Fig. 6. that 70

percent of the packets are dropped during the attack. Due to

a very high drop in the percentage of the packets, we can

observe the jitter increased by approximately 50 percent.

After applying the rule of marking down out-of-profile traffic

and prioritizing the real-time traffic, the network returns to a

stable region after being unstable. We can observe that, when

feedback is applied to our network, the jitter dropped down

to nearly 12 ms with no packets lost. The feedback is applied

at 145 seconds in the scenario. The network then goes from

an unstable state to a stable state within 10 seconds.

Figure 8. (a) rate of packets, (b) jitter and (c) packet loss measured from
the RTP stream before and after the attack. The network is attacked at
t=85.The feedback adding a parallel path is applied at t = 150s. We can
observe that after the application of the feedback the network takes about
60s for the network to restore back to stable state

B. Dropping Out-of-Profile Traffic

The feedback rule applied in this scenario drops the

out-of-profile traffic. Fig. 7. shows the traffic profile of

the network before and after the feedback is applied. The

feedback applied to the network under attack drops the traffic

that does not comply with the specified profile. The real-time

traffic matches with the specified rule and gets placed into

the bucket. The attack traffic with a very high rate and burst

size gets dropped, reducing the congestion at the router. The

network is restored back to a stable state in less than 10

seconds.

C. Parallel Path

Fig. 8. shows the output traffic profile of our network

before and after feedback is applied. With our network

initially connected in series, feedback is applied to the

network once the system becomes unstable, causing the

network configuration to change from series to parallel.

When the network is connected in parallel, the traffic load

is shared among the links, causing a lower jitter value as

well as only a minor percentage of packet loss. As a result,

the quality of the video restores back to the original. The

feedback is applied after 150 seconds. We can observe that

after the application of the feedback the network does not

restore back to the stable state, right away, as in the cases

of marking down DSCP and dropping out-of-profile packets.

Since it takes approximately 60 seconds to establish a link,

the network restores back to stable state after t=200s

V. CONCLUSION

Our feedback mechanism has a positive effect on the real-

time traffic. The network goes to the stable state in real-time

in all the scenarios except for the parallel path where there is

a slight delay. The delay is due to the time taken for the link

847



to be enabled. In this approach, we did not consider the RTP

delay, which is an important quality of service parameter

for video streaming, as we did not observe a drastic change

in the delay. We used a UDP flood attack to emulate the

DDoS attack. In our approach, the micro firewall rule detects

the known traffic and allows the video streaming seamlessly

despite the attack. This approach is not suitable for data

traffic as the rate of data is unpredictable; also, prioritizing

the data traffic is not an acceptable approach. Although we

did not actively stop the attack, except for dropping the out-

of-profile traffic scenario, we were able to use a passive

approach to bring the network back to a stable state.

A. Future Work

In the future, we will design the controller to automate

the feedback process. The controller will detect the irreg-

ularities in the output and add the corresponding rule to

ensure seamless video streaming. We will test this feedback

mechanism with several other types of DDoS attacks such as

SYN flood and other application layer attacks, similar to the

one considered in [6], on the Real-Time services. We would

like to extend this feedback mechanism in the Software

Defined Networks (SDN) architecture where control theory

proves to be more effective.
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