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Abstract:We prove that a variant of the Courtois-Finiasz-Sendrier signature is strongly existentially unforge-
able under chosen message attack in the random oracle model, assuming hardness of the Permuted Goppa
Syndrome Decoding Problem (also known as the Niederreiter problem). In addition, we explicitly show that
security against key substitution attacks can be arranged by a standard technique of Menezes and Smart,
hashing the public key.
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1 Introduction
Post-quantumcryptography is concernedwith classical cryptographic solutions that o�er security in thepres-
ence of large-scale quantum computers. The importance of this line of research beyond the academic setting,
is evidenced by NIST’s interest in working toward a standardization in this area [1]. Digital signatures [2] are
one area of particular interest, and several proposals building on coding theory have beenmade—for a survey
we refer to Cayrel and Meziani [3] (see also [4]).

Currently, there are two major directions in the literature, both invoking the random oracle model:
the FDH-like scheme by Courtois, Finiasz and Sendrier [5] (we will refer to it as the CFS signature) and
the signatures based on identi�cation schemes using the Fiat-Shamir (FS) transform (see, e.g., [6]). The
signature size of the former scheme is much smaller compared to that of the latter. The CFS scheme was
proven existentially unforgeable under chosen message attack (EUF-CMA) by Dallot [7] under hardness
of the Goppa-Parametrized Bounded Decoding (GPBD) problem and the Goppa-Code Distinguishing (GD)
problem. Regrettably, Faugère et al. [8] showed the GD problem to be solvable in polynomial time for the
parameters related to the CFS signature by presenting, in particular, a distinguisher for Goppa codes of high
rate. This disproves the hardness of the GDproblem for the parameters relevant to the CFS scheme, and hence
invalidates Dallot’s security argument.
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1.1 Our contribution

Revised security analysis
In this paper, we adjust the security argument for the CFS schemeby observing that the distinguisher does not
solve the underlying decodingproblem, yet this problem is exactly the one that needs to be solved to obtain an
existential forgery. Since the assumption of GD to be hard is no longer true, we use a stronger assumption—
the assumed hardness of the Permuted Goppa Syndrome Decoding (PGSD) Problem (see Section 2 for the
de�nition). It is sometimes referred to as the Niederreiter Problem. In fact, we prove that the CFS scheme is
strongly existentially unforgeable under chosen message attacks (SEUF-CMA). We justify strengthening the
assumption by observing that the problem, which the adversary is facing in creating an existential forgery,
is indeed a decoding problem, while indistinguishability of the public key is not a concern in the context of
(standard) digital signatures. This problem is related to one-wayness of the code-based Niederreiter public-
key encryption [9], and it is a long-standing open problem [10].

We note that Dallot’s original proof claiming EUF-CMA security can be �xed by directly plugging the new
assumption into it. In comparison, we show that the CFS signature is strongly EUF-CMA secure. Moreover,
our proof allows us to make a precise security statement. Finally, using a technique by Coron [11], we obtain
a tighter reduction in the proof compared to that of Dallot. However, our reduction is not as tight as Coron’s
result for an RSA-based signature: The RSA function can be viewed as a random permutation such that each
element in the range has a pre-image in the domain. In comparison, when it comes to the syndrome decoding
problem, we cannot guarantee that each element in the range is a valid syndrome (i.e., that it corresponds to
an error vector of Hamming weight at most t). This distinction makes the re-randomization trick in Coron’s
proof inapplicable in our setting.

Security against key substitution attacks
Key substitution attacks target the signature, for which the adversary seeks to compute a new public key for
which the signature would verify. Dou et al. [12] presented key substitution attacks against the CFS signature
andmentioned the following countermeasure [13] to counter this attack: Pad themessagewith the public key
before hashing. However, this approach does not work in general as pointed out in [14], and the formal proof
is not provided in [12]. We give a proof that for the CFS signature this simple countermeasure indeed works.

1.2 Related work

Mathew et al. [15] proposed to mask the public key in the CFS scheme, and provided a heuristic argument
that it defeats Faugère et al.’s distinguisher [8], hereby proposing an alternative solution to the one presented
in this work. They assume hardness of PGSD and a stronger version of Goppa distinguishability (based on a
special coding problem). The disadvantages, compared to our proposal, are the absence of strong EUF-CMA
security, an additional (not well-studied) coding assumption, and an additional computational cost incurred
by the masking.

2 Preliminaries
Throughout, we denote by wt(x) the Hamming weight of a vector x. To start out we recall some basic
terminology.

2.1 Security of digital signatures

A digital signature schemeΣ = (Gen, Sign,Verify) is comprised of three algorithms.
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Gen: Takes a security parameter 1λ and outputs a pair of keys (sk, pk) which are the signing key and the
veri�cation key, respectively. The veri�cation key is public.

Sign: On input a message m and the signing key sk, outputs a signature σ on the message m.
Verify: Takes as input the veri�cation key, amessagem and a signature σ, and outputs a bit denoting accept

or reject, respectively.

The standard security notion for a signature scheme is Existential Unforgeability against Chosen Message
Attack (EUF-CMA): The forger gets a public key pk from a challenger who generates a key pair (sk, pk).
The forger can query a signing oracle on polynomially many messages mi hereby obtaining signatures σi.
The forger can also issue a hash query on a message m and obtains its hash value. We say that the forger
wins the EUF-CMA game, if she successfully outputs a pair (m∗, σ∗), where σ∗ is a valid signature of a
message m∗ under the signing key sk with the restriction that the forger has never requested a signature
for the message m∗.

For some applications, an upgraded version of the above property, called Strong Existential Unforgeability
against Chosen Message Attack (SEUF-CMA) is required.

1
The original EUF-CMA de�nition requires that the

adversary cannot forge a signature of a message, which has not been signed by the signer. The SEUF-CMA
de�nition requires that the adversary cannot even produce a di�erent signature on a message which has
already been signed. The SEUF-CMA game is almost identical to the EUF-CMA game except that when the
forger outputs a valid message-signature pair (m∗, σ∗), she succeeds, if σ∗ has never been returned by the
challenger as the signature of m∗.

We say that a signature scheme is (t, ε, qhash , qsig)-SEUF-CMA if the probability of a forger running in time
t, who is allowed to query the hash oracle and the signature oracle at most qhash and qsig times, respectively,
to win the above game is at most ε. The probability distribution is induced by the randomness of both the
signature scheme and the internal random coins of the forger.

2.2 Security assumptions

Next, we introduce a problem, which is closely related to the syndrome decoding problem. The di�erence is
that the underlying code is a permuted version of the Goppa code chosen exactly as the public key of the
Niederreiter PKE [9].

Permuted Goppa Syndrome Decoding Problem (PGSDP):
Instance: An (n−k)×n parity checkmatrixH for a binary Goppa code G capable of correcting up to t errors,

a random (n − k) × (n − k) binary non-singular matrix S and a random n × n permutation matrix P. Let
Hpub = SHP and s = (s1, . . . , sn−k).

Problem: Find a binary vector x = (x1, . . . , xn) of Hamming weight at most t, such that Hpub ⋅ xT = s (we
will call the vector s a syndrome).

We say that PGSDP is (t, ε)-hard, if the probability of �nding a solution to a randomly given syndrome is at
most ε within time t.

2.3 Modi�ed CFS

Let us consider a variant of the CFS signature scheme [5], introduced by Dallot [7], where a randomly chosen
value will be concatenated with the message rather than an accumulative counter used in the original CFS
signature scheme.We refer to this random variable as a salt in the proof of the next section. A di�erence from
Dallot’s scheme is that now the public key is also added to the hash (being concatenated with the message

1 This is for instance of interest, when a signature is part of a session identi�er in a group key establishment protocol.
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and the counter). The latter variant, whichwe refer to asmCFS, is proven to be secure against key substitution
attacks as described in Section 4.
GenmCFS(1λ): Select n, k and t according to the security parameter λ. Pick a random parity check matrix

H0 of an (n, k)-binary Goppa code C0 decoding t errors. This code remains secret. The public key is
obtained by randomly permuting the coordinates of C0 andmultiplying by a randomnon-singularmatrix
of dimension n− k. Speci�cally, choose a random (n− k)×(n− k) non-singular matrix U, a random n×n
permutation matrix P and a hash function h ∶ {0, 1}∗ → Fn−k

2 . The public key pk is H = UH0P and the
private key sk is (U,H0, P). Set t = n−k

log2n
.

SignmCFS(M,H0):
1. Choose ri ∈R {0, 1}n−k.
2. Compute x = DecodeH0(U

−1h(M∣∣pk∣∣ri)).
3. If no x was found, then go to Step 1.
4. Output (ri , xP).

VerifymCFS(M, r′i , x′,H): If wt(x′) > t, then the signature is invalid. Otherwise, compute s′ = Hx′T and s =
h(M∣∣pk∣∣r′i). The signature is valid if s and s′ are equal.

3 Security against Strong Existential Forgeries
In this section, we prove the SEUF-CMA security of themCFS signature scheme presented above, based on the
assumption that PGSDP is hard. One crucial property that is worth mentioning towards our result is that the
errors, which are output by SignmCFS algorithm in the random oracle model, follow the uniform distribution
over words of Hamming weight at most t. Note that in this proof, for the sake of simplicity, we have ignored,
without loss of generality, the public key inside the hash function.

Theorem 3.1. Suppose that h is a random oracle, PGSDP is (t′, ε′)-secure, and let Ts(n, k) denote the time to
compute a syndrome for an (n, k) Goppa code. Then, the mCFS scheme is (t, ε, qhash , qsig)-secure

2
, where:

t = t′ − qsig(qhash − qsig)Θ(n − k) − qhashΘ(n − k) − qsigTs(n, k),

ε ≤ 2n−k

2n−k − qsig
1

1 − 2k−n
qhashε′.

Proof. LetF be a forgerwhich (t, ε, qhash , qsig)-breaks the SEUF-CMA security of themCFS signature scheme.
We construct a decoder D that (t′, ε′)-solves the PGSDP. The decoder is given input (H, s∗) and tries to �nd
a vector e ∈ Fn

2 such that HeT = s∗ and wt(e) ≤ t. The decoder will challenge the forger F and simulate
the oracles for it. If the forger succeeds with a valid forgery of the mCFS signature then with non-negligible
probability the decoder can use the forgery made by the forger to resolve its given instance of the syndrome
decoding problem.

Without loss of generality, we assume that the forger never repeats a hash query. However, the forgermay
repeat a signature query in order to get di�erent signatures of the same message. The decoder maintains a
counter i, initially set to zero.

When a message M appears for the �rst time in the hash query or the signature query, the decoder
increments the counter i and sets Mi ← M. Then the decoder D generates a list Ri of qsig random values
(with repetition) in {0, 1}n−k as the pre-de�ned salts that, when concatenated with Mi, hash to decodable
syndromes.Weuse the expressiondecodable salts to denote all salts that correspond todecodable syndromes.
Denote by Ntotal the number of all available salts, and by Ndec the number of decodable salts. Clearly
Ntotal = 2n−k. By the analysis from CFS [5], Ndec ≈ Ntotal/t!. Since we model the hash function as a random

2 In the NIST speci�cations, it is mentioned that the number qsig of signing queries can be as large as 264 for a security level of
128 bits. In this case, the factor qsig×qhash is non-negligible, which shows that onemuch take extra care about these parameters,
when dealing with practical implementations.
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oracle, the probability that a salt is decodable is the same for all salts. Thus we can generate the list Ri of
length qsig by sampling from all 2n−k salts with each of them being chosen with probability qsig/(t! ⋅ Ndec).
The decoder also randomly chooses an integer c from [1, . . . , qhash] so that it answers the c-th hash query
with s∗.

When the forger F makes a hash query for Mi ∣∣ri, if it is the c-th hash query, the decoder D returns
h(Mc ∣∣rc) = s∗. Otherwise, the decoder distinguishes the following two cases:
Case 1: r /∈ Ri. The decoderD generates a random syndrome s from Fn−k

2 and returns the value h(Mi ∣∣r) = s.
Case 2: r ∈ Ri. ThedecoderD generates a randomvector x fromFn

2 such thatwt(x) ≤ t, and returns h(Mi ∣∣r) =
HxT .

The decoder has to consider the problem that the c-th hash query made by the forger comes in the form
Mc ∣∣rc, where rc ∈ Rc, which means that h(Mc ∣∣rc) has to be de�ned as a seemingly decodeable syndrome.
If this event occurs, the decoder aborts and admits failure. For convenience, we denote this event by Eabort.
Also note that Pr[Eabort] ≤

qsig
2n−k .

When the forgermakes a signature query forMi, thedecoder picks a random r from the listRi anddiscards
it from the list. Since there are at most qsig signature queries and the list Ri initially contains qsig elements,
this is always possible. Then the decoderD distinguishes the following two cases:
Case 1: If there has already been a hash query for Mi ∣∣r, we have h(Mi ∣∣r) = s = HxT for some randomly

chosen x. The decoder returns x as the signature together with s and r. The forger can simply check the
validity of the signature by deciding whether the equality HxT = s holds or not.

Case 2: If Mi ∣∣r has not been queried before, the decoder generates a random vector x from Fn
2 such that

wt(x) ≤ t, and returns x as the signature along with h(Mi ∣∣r) = HxT = s and r. The forger can simply
verify the validity of the signature by checking whether the equality HxT = s holds or not.

Now, we argue that the view of the forger is indistinguishable in the two cases, whether she is facing a real
signature challenger or the decoder. First, for the hash oracle, we ignore the event Eabort since from the above
discussion the probability that this event happens is negligible. In the real signature case, the distribution of
the hash oracle is uniform over the range of the random oracle h(⋅). Now, in the decoder situation, there are
two cases for a hash oracle h(m∣∣r):
(1) If the random salt r /∈ Ri, the output has the same distribution as a true random oracle.
(2) If the random salt r ∈ Ri, the output of the hash oracle is h(m∣∣r) = HxT , which looks like a decodable

syndrome.

The probability that the second case occurs is negligible, which can be bounded by

1 −
(Ntotal−qsig

qhash
)

(Ntotal
qhash

)
.

To verify this claim, consider a game as follows: there are in total Ntotal balls and Ndec of them are red, the
hash queries randomly choose qhash balls without replacement, while the signature queries randomly choose
qsig red balls with replacement. The probability that the qsig red balls chosen by the signature queries do not
contain any balls chosen by a hash query is lower bounded by the probability that the hash queries only
choose the balls, which are not chosen by a signature query (assuming that the signature queries choose qsig
di�erent red balls), which is (Ntotal−qsig

qhash
)/(Ntotal

qhash
). With Ntotal = 2n−k ≫ max(qsig , qhash), the probability that

case (2) occurs is negligible since

1 − (Ntotal − qsig
qhash

)/(Ntotal
qhash

) = 1 −
Θ((2n−k − qsig)qhash)

Θ((2n−k)qhash)
= O(2k−n).

Hence, it is evident that the case (2) occurs with negligible probability and the view of the forger is almost
identical between the cases, when she is facing a signature challenger or a decoder of case (1). Combining
the arguments above, we claim that the view of the forger is indistinguishable between the cases, when she
is facing a signature challenger or a decoder.
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When the forger outputs a forgery (M, r, x), we assume that it has already made a hash query for (M∣∣r)
but none of the signature queries for M has used the salt r, so M = Mi and r = ri for some i. Otherwise,
the decoder goes ahead and simulates a hash query for (M∣∣r). We justify the assumption that the forger has
made a hash query for her forgery (M∣∣r) as follows. If the forger has not made such a hash query before, the
decoder simulates the query for (M∣∣r) and we denote the result as s = h(M∣∣r). First, we show that none of
the signature queries for M has used the salt r. If it is an EUF-CMA forgery, which means that no signature
of the message M has been queried before, then certainly (M∣∣r) has not been used in any of the signature
queries. If it is an SEUF-CMA forgery, the forger may have queried the signature oracle for the message M.
However, none of the signature oracle queries forM uses r as salt. Otherwise, (M, r, x) does not make a valid
forgery, since it must be some signature, which has already been queried by the forger. Next, we show that
M must be equal to someMi for i ∈ [1, . . . , qhash]with overwhelming probability. If not, then the probability
that h(M∣∣r) = s is at most 2k−n. Therefore, with probability at least 1 − 2k−n, (M∣∣r) = (Mi ∣∣ri) for some i.

Let SF denote the event that the forger F succeeds in the experiment with the constraint that it must
have made a hash query on the forgery message and random salt (i.e., it has queried the hash of (M∣∣r) as
we justi�ed above). Note that if F succeeds it means that F outputs a valid forgery (M, r, x), which satis�es
M = Mi and r = ri for some i. If i = c, then we get H0xT = h(Mc ∣∣rc) = s∗, since the c-th hash query was
answered by returning s∗. So the decoder can solve the instance of the PGSDP by returning e = x as the
answer. The forger F succeeds in this experiment if and only if the decoder does not abort at the c-th query,
F has made a hash query for M∣∣r, and it outputs a valid forgery for message M with the salt r. Hence,

Pr[SF] ≥ (1 −
qsig
2n−k

)(1 − 2k−n)ε.

Recall that ε′ denotes the probability that the decoder successfully solves its decoding instance. Clearly,

ε
′ = Pr[SF ∧ i = c] ≥ 1

qhash
Pr[SF] ≥

1
qhash

(1 −
qsig
2n−k

) (1 − 2k−n)ε,

which translates into

ε ≤ 2n−k

2n−k − qsig
1

1 − 2k−n
qhashε′.

Now, let us consider the time,which it takes for thedecoder to solve thePGSDP. In the experiment, thedecoder
generates at most qsig(qhash +qsig) random elements as salts. When it answers a hash query, it searches a list
of length qsig and when it answers a signature query, it computes a syndrome for an (n, k) Goppa code. So,
we have

t′ = t + qsig(qhash + qsig)Θ(n − k) + qhashΘ(n − k) + qsigTs(n, k),

which translates into

t = t′ − qsig(qhash + qsig)Θ(n − k) − qhashΘ(n − k) − qsigTs(n, k),

where Ts(n, k) denotes the time to compute a syndrome for an (n, k) Goppa code.

4 Security against Key Substitution Attacks
Given a signature scheme Σ = (Gen, Sign,Verify), a key substitution attack (with malicious signer) is a
probabilistic polynomial time algorithm KSA which on input of valid parameters, outputs two di�erent valid
public keys pk and pk′ and a message/signature pair (M, σ), where the veri�cation algorithm accepts on
input both (M, σ, pk) and (M, σ, pk′).

A key substitution attack KSA is calledweak if the KSA also needs to output private keys corresponding to
public keys, otherwise the KSA is called strong. The proof of security against strong key substitution attacks
for mCFS is shown in Theorem 4.1.

Theorem 4.1. The modi�ed CFS scheme mCFS is secure against strong key substitution attacks.
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Proof. SupposeAKSA can successfully attackmCFSwith non-negligible probability. LetBCRH be an adversary
who wants to �nd a collision of h. Now, as the signer is malicious, the signer can provide sk to AKSA

after signing. Still, to succeed, AKSA has to �nd some pk′ such that h(M∣∣pk∣∣ri) = h(M∣∣pk′∣∣ri). It is
required becauseAKSA has to pass the veri�cation HxT = H′xT . Now, after getting success,AKSA hands over
(M∣∣pk∣∣ri ,M∣∣pk′∣∣ri) to BCRH . De�nitely it is a collision for h. So, the probability of getting a collision of h is
at least as large as the success probability of AKSA. But, h is assumed to be collision resistant. AKSA cannot
get success with non-negligible probability, and the claim follows.

5 Conclusion
We showed that the code-based mCFS signature is both SEUF-CMA secure and KSA secure in the random
oracle model under hardness of the Permuted Goppa Syndrome Decoding Problem. It remains an interesting
challenge to construct (e�cient) code-based signatures, which are provably secure under weaker assump-
tions and/or provably secure in the standard model.
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