
Performance Analysis of Elliptic Curves for Real-
time Video Encryption

Abstract—The use of real-time video streaming is increasing
day-by-day, and its security has become a serious issue now.
Video encryption is a challenging task because of its large frame
size. Video encryption can be done with symmetric key as well as
asymmetric key encryption. Among different asymmetric key
encryption technique, ECC performs better than other
algorithms like RSA in terms of smaller key size and faster
encryption and decryption operation. In this work, we have
analyzed the performance of 18 different ECC curves and
suggested some suitable curves for real-time video encryption.

Keywords—ECC, Real-time video streaming, Encryption,
Security

I. INTRODUCTION

Rapid advances and developments in our Internet
infrastructure and the plethora of applications that drive these
technologies have made real-time media streaming a household
commodity. In this context, we define real-time media
streaming to be the continuous flow of a media stream, such as
audio or video, over the Internet by a provider where the
content is most likely presented to the end user before it has
been entirely downloaded. With growth in the areas of video
conferencing, web-based television services, e-learning, and
telemedicine, popular Internet-driven businesses such as
YouTube and Netflix provide live media streaming to both its
corporate and individual users. For end-users, streaming video
means that they can enjoy the convenience of watching the
video almost as soon as it begins to download. As a result,
Internet traffic sharing of live streaming video is increasing at a
relatively constant rate and is expected to reach 82% of all
consumer Internet traffic by 2021, according to Cisco’s June
2017 Visual Networking Index report [1].

So, while consumers cannot get enough of multimedia
streaming, security and privacy has become a major concern
for both providers and end-users who are feeling the effects of
copyright infringement from illegal sharing of multimedia data,
public revelation of sensitive data, and the like. In domains
such as telemedicine, real-time streaming video can be very
problematic as authentication and encryption issues present
impersonation and privacy challenges, especially when
valuable multimedia assets are being distributed and
transmitted over a network. The Real-time Transport Protocol
(RTP) is used extensively for real-time media transmission
over IP networks, but unfortunately data encryption is not built-

in to RTP. Instead, the Secure Real-time Transport Protocol
(SRTP) was developed after-the-fact to provide encryption and
other security protections in both unicast and multicast
applications [17]. Symmetric key cryptography techniques,
such as AES, are commonly used to provide multimedia
encryption on the data stream itself, but the key exchange
procedure with this kind of scheme has been problematic due to
ongoing implementation issues in early SRTP solutions that
resulted in many solutions using non-standard negotiation and
key management techniques [14, 23].

In this paper, we propose that asymmetric key cryptography
may be a more viable option. We have thus implemented an
asymmetric key cryptographic transform in RTP/RTSP payload
based on Elliptic Curve Cryptography (ECC) in real-time video
streaming applications. In our scenario, the server uses the
receiver’s public key to encrypt the video streams to send those
streams to the client, who then decrypts the encrypted media
using its private key. Careful consideration has to be made in
identifying an optimal encryption method that would protect
the multimedia data while still ensuring real-time streaming of
videos, as end-users would reject any solution that degrades the
quality of the content or adds significant delay to the process
through high computational costs and overheads. In our
implementation, we have tested and analyzed the performance
of 18 ECC curves and compared these results with the
performance of non-encrypted as well as AES-encrypted
streams. Based on our results, we suggest some suitable ECC
curves for the encryption of real-time video streaming.

II. RELATED WORK

The use of ECC to encrypt the real-time video is not new.
Spanos and Maples in 1995 proposed an approach to video
encryption. Since most compression algorithms are lossy in
nature, they selected the most sensitive portion of the
compressed video stream to reduce the amount of encryption
[2]. Bhargava et al. proposed four MPEG video encryption
algorithms based on secret key which could be used to secure
different video applications like video-on-demand, video
conferencing etc. The encryption was done by randomly
changing the sign bits of Discrete Cosine Transform
coefficients as well as by changing the motion vector's sign
bits. They applied the inverse Discrete Cosine Transform
method for encryption/decryption at the time of MPEG video
compression/decompression [3]. Tawalbeh et al. have proposed
two ECC-based encryption algorithms. One is selective

Nilanjan Sen
Dept.of Computer Science

and Engineering
University of North Texas

Denton, USA
nilanjansen@my.unt.edu

Ram Dantu
Dept. of Computer Science

and Engineering
University of North Texas

Denton, USA
ram.dantu@unt.edu

Jagannadh Vempati
Dept. of Computer Science

and Engineering
University of North Texas

Denton, USA
jagannadhvempati@my.unt.edu

Mark Thompson
Dept. of Computer Science

and Engineering
University of North Texas

Denton, USA
mark.thompson2@unt.edu

64

2018 National Cyber Summit Research Track

978-1-5386-7252-5/18/$31.00 ©2018 IEEE
DOI 10.1109/NCS.2018.00015

encryption of the quantized DCT coefficients and the second
one is perceptual encryption based on selective bit-plane
encryption. They have used E53330939(2, 7) curve for encrypting
the multimedia stream. They have done selective encryption of
a portion of the multimedia data using ECC [4]. Feily et al.
have done a comparative study of performance of both ECC
based encryption and symmetric key encryption based on
Blowfish cipher. They have tested the performance of different
encryption techniques on a commercial application named
MCS. In their work, they have encrypted the entire compressed
video stream using both ECC as well as symmetric key
encryption [5]. Bhandari and Wadhe have used ECC based
encryption in a different way to encrypt real-time video. They
have proposed a real-time video encryption algorithm using
ECC and RC5 algorithm, but ECC is not used for encrypting
the video stream directly. They have generated RC5 128-bit
key for actual video encryption. ECC public/private key pair is
generated to encrypt the RC5 key only. During the key
exchange phase, the sender encrypts the RC5 key using the
receiver’s public key and sends that encrypted key to the
receiver. The receiver decrypts the RC5 key using its ECC
private key [6]. A similar kind of approach can be found in [7,
8]. Apart from these works, many works are done to encrypt
images using ECC [9-12]. Shah and Saxena analyzed the
performance of various encryption algorithms based on some
parameters. They categorized the algorithms into fully layered
encryption, permutation based encryption, selective encryption
and perceptual encryption. The parameters are visual
degradation, encryption ratio, speed, compression friendliness,
format compliance and cryptographic security. They found that
fully layered or naïve algorithm cannot be used for real-time
media encryption because it is slow. Though permutation based
algorithms are faster, they lack sufficient level of security.
Selective encryption algorithms' speed varies depending on the
number of parameter used. Finally, perceptual encryption
algorithms are suitable for low quality video. According to
them, these four categories of algorithms are not suitable for
high security. No single algorithm can satisfy all parameters
[18].

Most of the related works partially encrypted the video
frames, but we have encrypted the entire video frames.

III. MOTIVATION

Continuous technological advancements are making
multimedia streaming a part of our daily lives and until
recently, most video streaming was done in the clear,
completely unencrypted. Now, with a nearly constant stream of
news detailing more and more sophisticated network attacks,
businesses such as Netflix are looking to encrypt customer
streams [19-21]. There are also a lot of other players in the
online movie on-demand streaming services, such as Hulu,
Amazon Instant Video, and Vudu. The motivation for this work
is to make real-time video streaming more secure. During
online video transmission, an eavesdropper can intercept the
video packets for personal use or distribution in the black
market. Either way, this kind of illegal packet interception can
mean huge financial losses for these companies as well as a
threat to digital rights protection.

The Real Time Message Protocol Encrypted (RTMPE) and
Real Time Message Protocol over TLS/SSL connection
(RTMPS) proprietary protocols used in streaming videos were
originally developed by Macromedia and are now owned by
Adobe. RTMPE generates RC4 keys for video encryption,
which can be broken [13]. Like VoIP media encryption, the
symmetric key encryption technique AES can be used in this
case, but to protect the AES key during the key exchange phase
requires that the key itself be encrypted; otherwise the key can
be intercepted easily, rendering the cipher insecure. The Diffie-
Hellman key exchange technique can be used in this context,
but this can also be compromised [14]. There are many
asymmetric key encryption techniques, but we have used ECC
based encryption technique here, because it is more efficient in
terms of key size and computation time compared to other
approaches like RSA [25].

IV. PROBLEM STATEMENT

Our present work is based on i) analyzing the performance
of various ECC curves for the real-time video encryption, and
ii) suggesting a suitable ECC curve for optimal results. Given
the importance of having a seamless implementation with
efficient video transmission in a real-time environment where
consumers expect minimal if no latency at all, we also compare
our ECC-based results with non-encrypted as well as AES-
encrypted video streaming to ensure that significant complexity
and overhead is not added.

V. ARCHITECTURE

The experiment is done using client-server architecture. The
client and server are connected through our institutional
network. We have used Ubuntu 16.04 (64 bits) operating
system in both server and the client. The code is written in
Java, and Bouncy castle (an open-source lightweight
cryptography API for Java) is used to implement the encryption
and decryption processes. MJPEG video codec is used for our
experiment. The clip duration is 20 seconds.

Server configuration:
i. Intel 3.40 GHz Core i7-3770 processor
ii. 16 GB Main memory

Client configuration:
i. Intel 2.50 GHz Core i5-2450M processor
ii. 6 GB Main memory

VI. NETWORK TOPOLOGY

Our experimental setup consists of one server and one client
who are connected to each other through our institutional
network. The server is connected to the network through
ethernet connection, and the client is connected to the network
through the institutional Wi-Fi.

Fig. 1. Experimental setup diagram

Server Client

Encrypted video

Video =>
Encryption

Decryption
=> Video

Institutional
network

65

TABLE I. TYPES OF ECC CURVES USED

VII. METHODOLOGY

We based our work on the Java based real-time video
streaming application from Github [15], and then incorporated
out ECC-based encryption code into this platform. Our
application consists of a server and a client where the client
makes the initial request for a video. The server then encrypts
the video file frame-by-frame and sends it to the client. The
Real Time Streaming Protocol (RTSP) is used to play the
streaming media at the client end after decryption. The
encrypted video stream is sent to the client as a Real-time
Transport Protocol (RTP) payload. UDP is used as transport
layer protocol. Figure 1 depicts the block diagram of our
experimental setup.

VIII. RESULT ANALYSIS

In this work, we have tested the video encryption using 18
different ECC curves. The used curves are given in table 1. We
have used 3 types of curves namely X9.62 curves (Public key
cryptography standard used for the financial services
industries), NIST recommended curves, and the Brainpool
curves developed by Teletrust. For the first two types of curves,
we have used both prime as well as binary curves. All the
curves have key size more than 224 bits, because NIST
recommends the key of size more than or equal to 224 bits for
better security [16].

We have measured the performance of the curves based on the
end-to-end delay in milliseconds, the jitter in milliseconds, the
packet loss, encryption and decryption time, and data rate. In
our experiment, we didn’t find any packet loss problem in any
ECC curves. In this section, we will discuss the performance

Fig. 2. End-to-end delay comparison between different X9.62 curves. Three
binary curves’ (272-bit, 368-bit and 431-bit) end-to-end delays are less than
the 256-bit prime curve, and 272-bit curve has lowest delay among them.

of the ECC curves based on the end-to-end delay, and jitter
compare to the non-encrypted video stream and the encrypted
video stream with 256-bit AES encryption algorithm. We will
also analyze their performance based on encryption/
decryption time and data rate. In our experiment, we have
considered the network delay as the end-to-end delay.

In Fig. 2, we can see the end-to-end delay comparison
between four X9.62 ECC curves with AES encryption and
non-encrypted video stream. The delay of 256-bit curve is
longest, but the delay of 272-bit curve is shortest which is
nearly equal to AES-encrypted and non-encrypted stream. So,
X9.62 272-bit curve can be suitable for video encryption
among other X9.62 curves.

Fig. 3 depicts the comparison of jitter of four X9.62 curves
and AES-encrypted and non-encrypted stream. The jitter of
256 and 272-bit curves are high, but compare to non-encrypted
and AES-encrypted video stream, these are very negligible, i.e.
nearly 0.06 ms. So, we can ignore this small difference. The
percentage difference between the smallest (AES) and the
highest (256 & 272-bit) jitter is only 0.14 which is very small.

Fig. 3. Jitter comparison between different X9.62 curves. 368-bit curve has
smallest jitter, and 256-bit and 272-bit curves have highest jitter than other
curves. But overall jitter difference is nearly 0.06 ms which is negligible.

Sl. No. Curve Key size (in
bits)

X9.62 prime curves:
1 prime256v1 256

X9.62 binary curves:
2 c2pnb272w1 272
3 c2pnb368w1 368
4 c2tnb431r1 431

NIST prime curves:
5 secp256k1 256
6 secp256r1 256
7 secp384r1 384
8 secp521r1 521

NIST binary curves:
9 sect283k1 283

10 sect283r1 283
11 sect409k1 409
12 sect409r1 409
13 sect571k1 571
14 sect571r1 571

Teletrust Prime curves:
15 brainpoolp256r1 256
16 brainpoolp320r1 320
17 brainpoolp384r1 384
18 brainpoolp512t1 512

66

Fig. 4. End-to-end delay comparison between different NIST curves. 283-bit
and 571-bit random curves have the shortest delay compare to other curves.
256-bit random curve has longest delay.

Fig. 4 depicts the comparison of NIST recommended ECC
curves. Though NIST generally recommends prime curves over
binary curves, in our experiment we have analyzed the
performance of both type of curves for real time video
encryption. We can see that the end-to-end delay is shortest in
283-bit and 571-bit random curves which are binary curves.
Among prime curves, 256-bit koblitz curve has the shortest
delay. So, NIST recommended 283-bit curve can be considered
in this context among other NIST curves, because 571-bit curve
has big key size which usually takes more time to encrypt and
decrypt the media.

Fig. 5 depicts the jitter comparison of NIST curves. Like
X9.62 curves, here also the jitter difference among the curves
are negligible, only 0.07 ms. So, we may not consider this
difference.

Now we will analyze the performance of the third category
of ECC curves, i.e. Brainpool curves. Fig. 6 depicts the end-to-
end delay comparison of these curves. The 512-bit curve has

Fig. 5. Jitter comparison between different NIST curves. 409-bit random and
571-bit koblitz curves have smaller jitter, and 256-bit, 283-bit and 521-bit
curves have higher jitter than other curves. Overall jitter difference is 0.07 ms
which is very small.

Fig. 6. End-to-end delay comparison between different Brainpool curve. 384-
bit and 512-bit curves have shortest end-to-end delay. 320-bit curve has
longest delay among other curves.

the shortest end-to-end delay, but 256-bit and 384-bit curves
also have short delays, and the difference is nearly 1 ms. So, we
can consider 256 or 384-bit curves among other brainpool
curves for the real-time video encryption as far as delay is
concerned, but not 512-bit curve because of its large key size.

Fig. 7 depicts the jitter comparison of Brainpool curves.
Like X9.62 and NIST curves, the jitter differences are
negligible in these curves. The maximum difference here is
0.08 ms. So, like previous two categories, we can ignore this
difference as well.

From our experiment, we have seen that there are not much
differences in jitter among the 18 curves as well as the AES-
encrypted and non-encrypted video stream. So, we can
conclude that this metric does not affect much in the quality of
real-time video if it is encrypted with any of the above
mentioned ECC curves.

So far, we have seen the category-wise performance of
different ECC curves in terms of end-to-end delay and jitter.
Now we will see the comparison of the performance of 18
curves all-together in terms of end-to-end delay. Fig. 12 depicts
the end-to-end delay of all curves. X9.62 272-bit and 431-bit
curves and NIST recommended 283-bit and 571-bit random
curves have nearly same and shortest delay among other

Fig. 7. Jitter comparison between different Brainpool curves. 512-bit curve has
lowest jitter, and 256-bit and 320-bit curves have high jitter compare to other
curves. But here also the overall jitter difference is 0.08 ms which is
negligible.

67

curves. X9.62 256-bit curve, NIST recommended 256-bit, 283-
bit, 409-bit and 572-bit koblitz curves, and Brainpool 256-bit,
384-bit and 512-bit curves have little longer delay compare to
the previous set, but the difference is nearly 2.5 ms. The ECC
random curves have long delay in this context. So, after
analyzing all curves, we can conclude that X9.62 272-bit and
431-bit curves and NIST recommended 283-bit and 571-bit
random curves performs well in the context of end-to-end
delay.

After analyzing the performance of 18 curves in terms of
end-to-end delay and jitter, now we will analyze the
performance of the curves in terms of their encryption and
decryption time. Fig 13 and 14 depict the encryption and
decryption time comparison between 18 curves as well as that
of AES encryption. We know that AES is symmetric key
encryption algorithm, which always performs faster than any
asymmetric key encryption as far as encryption and decryption
are concerned. But the encryption time of X9.62 and NIST
256-bit curves is nearly 3 ms which is quite reasonable.

In our experiment, the size of the video frames is between
6500 bytes and 14000 bytes. From Fig. 13, we can see that
X9.62 256-bit curve and NIST recommended 256-bit prime
curves (both koblitz and random) have smaller encryption time
compare to other ECC curves. Though AES has smallest
encryption time, the difference between AES and these curves
is nearly 3 ms, which is negligible. There are 5 more curves
which have lesser encryption time between 6 ms and 8 ms.
X9.62 272-bit curve and NIST recommended 384-bit prime
curve have encryption time less than 6.5 ms which can be
considered as less. As the key size increases, the encryption
time increases as well. NIST recommended prime curves
perform better than binary curves in this context. Most of the
Brainpool curves take more time for encryption. The reason
behind that, Brainpool curves use pseudo random primes [22].
On the other hand, NIST recommended curves use quasi-
Mersenne primes [23]. So, Brainpool curves are slower
compare to other curves.

In case of decryption time (Fig. 14), all the curves behave
similarly like encryption time plot. Here also, the differences
between AES and X9.62 256-bit curve and NIST
recommended 256-bit curves are negligible, only less than
1.15 ms. Five curves have decryption time between 2 ms and 3
ms. Brainpool 256-bit curve falls under this category, but its
encryption time is nearly 10 ms. So, we should not consider
this curve. X9.62 272-bit curve and NIST recommended 384-
bit curve have lesser decryption time also.

Fig. 8. Data rate comparison between AES and two Brainpool curves. Data
rate of encrypted video stream with smaller key size is more than that of
bigger key size for first 40-45 frames. So, video quality of first few frames
will be better where smaller keys are used for encryption.

Fig. 9. Data rate comparison between AES and two NIST recommended
curves. Data rate of encrypted video stream with 256-bit curve is more than
that of 571-bit key for first 50-55 frames. So, video quality of first few frames
will be better where smaller keys are used for encryption.

Finally, we will analyze the performance of the curves in
terms of video data rate. The video data rate is the number of
bits that are processed per unit time. It is related to the quality
of the video. If all other factors (like codec) remain same, then
high data rate means better quality of video. In our application,
it is measured in bytes per second. Fig. 8-10 depict the graph
of three categories of ECC curves. We have taken the curves
of the smallest key size and the largest key size in each
category into consideration. We have compared the
performance of each set of ECC curves with AES encryption
algorithm also. We have also considered the first 100 frames,
because we have observed that the data rates of the curves in
each category become nearly the same after first few
encrypted frame transmissions.

Late breaking news: One day before the submission, we
have found some interesting results that we want to share.
From our result, we have found that the video frames
encrypted with ECC curves of smaller key size have a higher
data rate at the beginning. This has been observed in all three
categories of ECC curves for the first few encrypted video
frames. We have seen that the initial data rates of the video
frames encrypted with smaller and larger key elliptic curves,
are different in first 40-45 encrypted frames using Brainpool
curves, in first 50-55 encrypted frames using NIST curves, and
in 18-20 encrypted frames using X9.62 curves respectively.
The initial data rate decreases with the increase in key size. In
case of X9.62 curves (Fig. 10), the initial data rate difference
is not so large compare to other two types of curves, because
here the key difference is small (256-bit and 431-bit, compared

Fig. 10. Data rate comparison between AES and two X9.62 curves. Data
rate of encrypted video stream with 256-bit curve is more than that of 431-
bit curve for first 18-20 frames. The data rate difference is small compared
to previous two, because the key size difference is less than the previous
two cases.

68

to 256-bit and 571-bit in Brainpool and NIST curves). We
have also observed that there is little or almost no difference in
data rate between AES and 256-bit ECC curves. So, we can say
that ECC curves with smaller key size perform better in context
of initial video data rate at the beginning of the video clip.
Since this is a very interesting finding, we need to do further
research on this issue.

From the various measurements, we have analyzed that
X9.62 272-bit and 431-bit curves, and NIST 283-bit and 571-
bit random curves have lowest end-to-end delay. Apart from
that, X9.62 256-bit curve, NIST 256-bit, 283-bit, 409-bit and
572-bit koblitz curves, and Brainpool 256-bit, 384-bit and 512-
bit curves have little more delay compare to the previous set.
But in terms of encryption and decryption time, X9.62 256-bit
and 272-bit curves and NIST 256-bit prime curves (both
random and koblitz), and 384-bit curve perform better. We
have also observed that the initial data rate for first few
encrypted frames is higher if we encrypt them with smaller
keys. So, we conclude that X9.62 272-bit curve and NIST 256-
bit prime curves (both random and koblitz) can be considered
as suitable for real-time video encryption.

IX. CONCLUSION

In this work, we have analyzed the performance of
encrypted real-time video stream using 18 ECC curves. We
have considered two metrics viz. end-to-end delay and jitter
since no packet loss is found in the entire experiment. We have
considered the encryption and decryption time of all curves.
We have also observed that initial video data rate is high if we
encrypt the video stream using ECC curves with smaller key
size. After considering all aspects, we have concluded that
X9.62 272-bit binary curve and NIST recommended 256-bit
prime curves (both random and koblitz) can be considered as
suitable for real-time video encryption. The jitters of all curves
are nearly equal and their differences are negligible compare to
AES-encrypted and non-encrypted video stream. Unlike other
related works that encrypted the video frames partially, we
have encrypted the entire video frame using ECC.

In this work, we have encrypted MJPEG video file for our
experiment. In future, we will test the same using different
types of video file formats that are supported by RTP. We have
run this experiment in the institutional network. In the future,
we will use a setup where the client and server will be
connected to each other through Internet. Last but not the least,
we will work further on the video data rate issue to find the
relation between the key size and the data rate.

ACKNOWLEDGMENT

We would like to express our profound and deep sense of
gratitude to Mr. Logan Widick and other students of Network
Security Lab for their invaluable help without which our work
would not have been successful. This research was partially

supported by NSF grants CNS1229700, CNS1637291, and
IIS1545599.

APPENDIX

The screenshots of the client playing the streaming video
after decryption, and encrypted streaming video before
decryption are given above. There is no significance of the
blue, orange and green colors below the screen of encrypted
video. These colors have appeared periodically in encrypted
video screen irrespective of the ECC curves.

 (a) (b)

(c) (d)

Fig. 11. (a) Video is played at client side after decryption, (b) Video
encrypted with Brainpool curve, (c) Video encrypted with X9.62 curve,
(d) Video encrypted with NIST recommended curve

69

Fig. 12. End-to-end delay comparison between 18 ECC curves. X9.62 272-bit and 431-bit, and NIST recommended 283-bit and 571-bit curves have lower
end-to-end delay.

Fig. 13. Encryption time comparison between 18 ECC curves. X9.62 256-bit curve and NIST recommended 256-bit curves have small encryption time.
X9.62 272-bit curve and NIST 283-bit and 384-bit curves also have small encryption time. Brainpool curves have large encryption time compare to their
counterparts in terms of key length.

Fig. 14. Decryption time comparison between 18 ECC curves. X9.62 256-bit curve and NIST recommended 256-bit curves have small decryption time.
X9.62 272-bit curve and NIST 283-bit and 384-bit curves also have small decryption time. Like previous plot, Brainpool curves have large decryption time
compare to their counterparts in terms of key length.

70

REFERENCES

[1] D. Mortensen, "THE LIVE STREAMING VIDEO REPORT: Forecasts,
emerging players, and key trends for brands’ and publishers’ next big
opportunity", http://www.businessinsider.com/the-live-streaming-video-
report-forecasts-emerging-players-and-key-trends-for-brands-and-
publishers-next-big-opportunity-2016-8

[2] G.A. Spanos, and T.B. Maples, “Performance Study of a Selective
Encryption Scheme for the Security of Networked, Real-Time Video”,
Fourth International Conference on Computer Communications and
Networks, IEEE, September 1995, DOI: 10.1109/ICCCN.1995.540095

[3] B. Bhargava, C. Sh, and S. Wang, “MPEG Video Encryption
Algorithm”, International Journal of Multimedia Tools and Application,
Vol. 24, September 2004, pp. 57-79.

[4] L. Tawalbeh, M. Mowafi, and W. Aljoby, “Use of elliptic curve
cryptography for multimedia encryption”, IET Information Security,
Vol. 7, June 2013, pp. 67-74.

[5] M. Feily, S., Noori, and S. Ramadass, “On the performance of
symmetrical and asymmetrical encryption for real-time video
conferencing system”, International Journal of Computer Science and
Information Security, 2010, Vol. 8(7), pp. 49–55.

[6] L. Bhandari, and A. Wadhe, “Speeding up Video Encryption using
Elliptic Curve Cryptography”, International Journal of Emerging
Research in Management & Technology, Vol. 2(3), March 2013, pp. 24-
29.

[7] K. Gupta, and S. Silakari, “Efficient hybrid image cryptosystem using
ECC and chaotic map”, International Journal of Computer Application,
Vol. 29(3), 2011, pp. 1–13.

[8] Z. Zhao, and X. Zhang, “ECC-based image encryption using code
computing”, International Conference on Communication, Electronics
and Automation Engineering, Advances in Intelligent Systems and
Computing, Vol. 181, 2013, pp. 859–865.

[9] G. Zhu, and X. Zhang, “Mixed image element encryption system”, Ninth
International Conference for Young Computer Scientists, Hunan,
November 2008, pp. 1595–1600.

[10] K. Gupta, S. Silakari, R. Gupta, and S.A. Khan, “An ethical way of
image encryption using ECC”, First International Conference on
Computational Intelligence, Communication Systems and Networks,
Indore, July 2009, pp. 342–345.

[11] K. Gupta, and S. Silakari, “Efficient image encryption using MRF and
ECC”, International Journal of Information Technology and Knowledge
Management, 2009, Vol. 2(2), pp. 245–248.

[12] V.K. Yadav, A.K. Malviya, D.L. Gupta, S. Singh, and G. Chandra,
“Public key cryptosystem technique elliptic curve cryptography with
generator g for image encryption”, International Journal of Computer
Technology and Application, Vol. 3(1), 2012, pp. 298–302.

[13] N. AlFardan, R. Holloway, D. J. Bernstein, K. G. Paterson, B.
Poettering, and J. C.N. Schuldt, “On the Security of RC4 in TLS”, 22nd
Usenix Security Symposium, pp. 305-320, August 2013.

[14] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thome, L. Valenta. B.
VanderSloot, E. Wustrow, S. Zanella-Beguelin, and P. Zimmermann,
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”,
ACM SIGSAC Conference on Computer and Communications Security,
pp. 5–17, October 2015.

[15] https://github.com/mutaphore/RTSP-Client-Server
[16] E. Barker, and A. Roginsky, "Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths",
NIST Special Publication 800-131A.

[17] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
"The Secure Real-time Transport Protocol (SRTP)", RFC - 3711,
https://tools.ietf.org/html/rfc3711

[18] J. Shah, and V. Saxena, "Video Encryption: A Survey", International
Journal of Computer Science Issues, Vol. 8(2), March 2011, pp. 525-
534.

[19] Netflix Techblog, https://medium.com/netflix-techblog/protecting-
netflix-viewing-privacy-at-scale-39c675d88f45

[20] "Netflix will start encrypting its streams to block prying eyes and
internet providers", https://qz.com/384184/netflix-will-start-encrypting-
its-streams-to-block-prying-eyes-and-internet-providers/

[21] D. Goodin, “It wasn’t easy, but Netflix will soon use HTTPS to secure
video streams”, Ars Technica, April 4, 2015,
https://arstechnica.com/information-technology/2015/04/it-wasnt-easy-
but-netflix-will-soon-use-https-to-secure-video-streams/.

[22] M. Lochter, and J. Merklevideo, "Elliptic Curve Cryptography (ECC)
Brainpool Standard Curves and Curve Generation", RFC - 5639,
https://tools.ietf.org/html/rfc5639

[23] M. Adalier, and A. Teknik, "Efficient and Secure Elliptic Curve
Cryptography Implementation of Curve P-256",
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-
cryptography-standards/documents/papers/session6-adalier-mehmet.pdf

[24] P. Thomas, and J. Kanclirz Jr., “Practical VoIP Security”, Syngress
Publishing, 2006.

[25] J. Lopez, and R. Dahab, "An Overview of Elliptic Curve Cryptography",
Technical Report,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2771

71

