
Make Consumers Happy by Defuzzifying the
Service Level Agreements

Kritagya Upadhyay
Department of Computer
Science and Engineering

University of North Texas
Denton, TX, 76207, USA

kritagyaupadhyay@my.unt.edu

Ram Dantu
Department of Computer
Science and Engineering

University of North Texas
Denton, TX, 76207, USA

ram.dantu@unt.edu

Yanyan He
Department of Computer
Science and Engineering
University of North Texas
Denton, TX, 76207, USA

yanyan.he@unt.edu

Abiola Salau
Department of Computer
Science and Engineering

University of North Texas
Denton, TX, 76207, USA

abiolasalau@my.unt.edu

Syed Badruddoja
Department of Computer
Science and Engineering

University of North Texas
Denton, TX, 76207, USA

syedbadruddoja@my.unt.edu

Abstract—A Service Level Agreement (SLA) is a special kind
of legal contract that binds a vendor to its customers where
the vendor commits to provide certain services in exchange for
certain payments from the customers. However, when customers
do not get the services that they have subscribed for, it becomes a
laborious job for customers to contact or visit the company and
claim the correct amount of compensation or service credits. On
the other hand, a Smart Contract is a contract that is a computer
program that also binds multiple parties into given agreements
but is a set of precise rules and is self-enforceable and self-
executable. In this paper, we have introduced a novel work where
we use fuzzy logic inside the Ethereum-based smart contract
for two significant objectives. The first objective is to make the
claim of the compensation easier and faster for customers by
translating the SLA into a smart contract. The second objective
is to make the smart contract even smarter and intelligent by
implementing fuzzy logic so that customers who have a hard
time understanding the legal jargon and ambiguities of the legal
contract and SLA to find out if the compensation amount they
are getting when the service is poor is good enough. Since fuzzy
logic models semantics of linguistic expressions by capturing
vagueness in the fuzzy sets, it becomes easier to solve the problem
of contractual ambiguities and expedite the process of claiming
compensation when implemented in a Blockchain-based smart
contract.

Index Terms—Smart contract, fuzzy logic, service level
agreement, SLA, ambiguity, complexity, smart legal contract,
blockchain, ethereum, clauses, interpretations

I. INTRODUCTION AND PROBLEM MOTIVATION

In our everyday life, when a customer makes a complaint
against the company about how bad the service they are
getting is, that is against the Service Level Agreement (SLA)
[1], the complaint is made in natural language. For example,
”The service is slow and has been really bad for over a month
now.” is the kind of complaint made by the customer to the
company that has plenty of vagueness in the statement. The
company takes advantage of the customer’s lack of legal and
contractual knowledge and tries to escape from making the
compensation to the customer. And even if the complaints
are heard, it takes a long time for the customers to claim
their compensation and get back their refund, which results
in uninvited wastage of extra time and money just to get the
compensations back.

Ambiguity and vagueness are the phenomenons that many

have tried to study in natural language. We find ambiguities,
fuzziness, and legal jargon abundantly that is beyond our
comprehension in legal contracts [2] [3] [4] and Service Level
Agreements (SLAs). Fuzzy logic is an approach to compute
something that is based on degrees of truth rather than the
Boolean true or false (1 or 0). Natural language has many
gray areas, and nothing can always be classified either as
1 or as 0. We have used fuzzy logic because it can model
the semantics of linguistic expressions. After all, fuzzy sets
can capture their innate ambiguity. Fuzzy logic is also much
cheaper and quicker at the same time when implemented
inside the smart contract [5] for the Blockchain compared
to machine learning due to the simplicity of fuzzy logic’s [6]
[7] rule-based system and an inference engine that makes the
smart contact not only smart but also intelligent.

Ambiguous

Fuzzy

Vague

Legal JargonsCustomer Service Level
Agreement

Fig. 1. A layperson does not understand the ambiguity, fuzziness, vagueness
and legal jargons present in the legal contract or service level agreement.

Despite the fact that there has been substantial research
going on for the smart contracts in the present day, the
study specifically on the ambiguity in legal contracts and
translation of the legal contracts to smart legal contracts
considering ambiguity in legal contracts as the main factor
has not been exhaustive. Notwithstanding that there have been
innumerable types of research on ambiguities and types of
ambiguities independently, there has not been any research
so far on abundant legal contracts and SLAs and how we can
reshape these legal contracts and SLAs into smart contracts,
considering ambiguity as the main challenge. An SLA has
been converted into a smart contract that can be used in
Blockchain to reduce the manual effort required to claim

98

2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA)

978-1-6654-1623-8/21/$31.00 ©2021 IEEE
DOI 10.1109/TPSISA52974.2021.00011

20
21

 T
hi

rd
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ru

st
, P

riv
ac

y
an

d
Se

cu
rit

y
in

 In
te

lli
ge

nt
 S

ys
te

m
s a

nd
 A

pp
lic

at
io

ns
 (T

PS
-IS

A)
 |

 9
78

-1
-6

65
4-

16
23

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
TP

SI
SA

52
97

4.
20

21
.0

00
11

20
21

 T
hi

rd
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ru

st
, P

riv
ac

y
an

d
Se

cu
rit

y
in

 In
te

lli
ge

nt
 S

ys
te

m
s a

nd
 A

pp
lic

at
io

ns
 (T

PS
-IS

A)
 |

 9
78

-1
-6

65
4-

16
23

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
TP

SI
SA

52
97

4.
20

21
.0

00
11

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

compensations, according to a study in [8]; nevertheless,
the authors do not explain the ambiguities and legal jargon
we see in the SLAs and how they were considered when
converting the SLA into a smart contract. While the authors
speak about the SLA management system in [9], they do not
discuss the process by which we can convert an SLA into
a smart contract. They also discuss only the basic functions
of the SLA Management System. Furthermore, the authors
discuss their proposed SLA management framework based
on a two-level blockchain model, and there is a discussion
of the transformation of a service level agreement into a
smart contract in [10] but does not address the ambiguous
requirements that can arise while writing a smart SLA.

II. METHODOLOGY

When a customer is not satisfied with the services provided
by his/her company as mentioned in the company’s Service
Level Agreement (SLA), due to the lack of knowledge
of legal jargon and vague words and phrases, it would be
difficult for any customer to understand the SLA clearly and
claim his/her compensation. A customer has to go through
a lot of hassles even if he/she would have understood
the ambiguous legal words in the SLA. Hence, in this
work, we have selected a real-life SLA from a popular
telecommunication vendor, Spectrum Internet from Charter
Communications, and studied the vagueness and ambiguities
found in the SLA. We read the whole SLA and found
out that there were not any metrics properly given for
the customers discussing the performance and operation
of the company. Furthermore, the compensation that was
provided was absolutely not in favor of the customers who
are experiencing the worst internet service. Since the whole
SLA was vague and the metrics were not properly set out
for the customers, we concentrated and summarized the
whole SLA into one general fuzzy rule. The rule is: ”If
the Performance and Operation is bad, then Compensation
should be high.” Here, Performance is the title of Clause 3
and Operation is the title of Clause 4. Since the basis for
calculation of compensation is the performance and operation
of the company as the SLA states, we have assumed our
two inputs are Performance and Operation and our output is
Compensation. This fuzzy rule would be the basis for this

work where we create an Ethereum-based smart contract
that has fuzzy logic implementation inside. We created a
smart contract that has a fuzzy inference system in it so
that the smart contract can actually be smart and can decide
by itself the total compensation amount to be sent back to
the customer’s account based on the ratings provided by the
customers. There is a possibility that customers can provide
fake ratings which are very low to get a higher compensation
amount. However, that is the concern of this work, and since
everything should be validated and everybody should come
into consensus in Blockchain so cheating by providing low
ratings just to get higher compensation even if a customer is
getting good service is not possible. Our main focus in this
work is the Ethereum-based smart contract itself that is smart
and intelligent which can understand and decode the human
natural language and hedges by quantifying the linguistic
variables and provide us a crisp value of compensation.

Our methodology comprises of a smart contract that in-
corporates a fuzzy logic mechanism that has four major
components and their respective functions in it. They are
Fuzzifier, Rule-based System, Inference Engine, and Defuzzi-
fier as shown in Fig. 2. In our methodology, we have three
main phases which are explained below:

A. Inputs

First, the customer provides the crisp ratings for the vague
inputs, Performance, and Operation to the smart contract. This
input is measured in percentages. For example, if the customer
is highly satisfied with the performance of the company but
somewhat satisfied with the operations of the company, he/she
would rate Performance as 90% and Operation as 40% in the
smart contract.

B. Components of Smart Contract

The ratings for two inputs provided by the dissatisfied
customer will now be fetched by the smart contract where it
performs fuzzy logic operations inside. We have four major
components inside the smart contract as further explained in
detail below:

FUZZIFIER

RULE-BASED SYSTEM

INFERENCE ENGINE
(INTELLIGENCE)

DEFUZZIFIER
(Center of

Gravity Method)

SMART CONTRACT INCORPORATING FUZZY LOGIC

CRISP RATING
OF

PERFORMANCE
AND

OPERATION

Customer rates vague inputs and fuzzy
descriptors of Performance and Operation

 with a crisp number

CRISP VALUE
OF

COMPENSATION

Smart Contract incorporating Fuzzy
Logic defuzzifies the crisp value of

Compensation (output) for the customer

Fig. 2. Our model architecture consists of three main phases where a dissatisfied user who wants to claim compensation, provides crisp ratings of the company
to the fuzzy-logic based smart which fuzzifies the inputs into linguistic variables for the generation and inference of rules and finally defuzzifies the aggregated
fuzzy output into the crisp value of compensation for the customer.

99

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

1) Fuzzifier: Fuzzifier is a component that is responsible
for the process of converting the crisp inputs (ratings) for
Performance and Operation provided by the user/customer.
The crisp ratings are converted into linguistic variables and
are assigned with the membership values. The source of the
membership values is either the domain expert, or intuition, or
statistical analysis. In this work, the source of assignment of
membership values is both domain expert and intuition. We
have developed three different smart contracts called SC 1,
SC 2 and SC 3 that have the same architecture but a different
number of linguistic descriptors and hence different number
of membership values for each linguistic descriptor. In our
SC 1, we have the least number of descriptors for inputs,
i.e., three. We increase the number of descriptors for inputs
to five for SC 2. Finally, we have eight descriptors for both
inputs and output in SC 3. Descriptors are fuzzy linguistic
variables that describe the gray areas of the fuzzy inputs. The
descriptors for inputs and output for each smart contract is
provided below:

• Smart Contract with 3 Descriptors (SC 1):

This smart contract has only 3 descriptors in its inputs
and 5 descriptors in its output. We have also referred
to this smart contract as ”SC 1” in our figures below as
this was the first smart contract we developed and tested.
The descriptors of the inputs and outputs are provided
below:

– Performance: {poor, good, excellent}
– Operation: {slow, acceptable, rapid}
– Compensation: {very low, low, normal, high, very

high}
• Smart Contract with 5 Descriptors (SC 2):

Our second smart contract has 5 descriptors in its both
inputs and output. The descriptors in this smart contract
has been stretched out to 5 for evaluation and further re-
search purposes. We have referred to this smart contract
as ”SC 2”. The descriptors of the inputs and outputs are
provided below:

– Performance: {very poor, poor, good, very good,
excellent}

– Operation: {very slow, slow, acceptable, fast, rapid}

Smart Contract

Provides crisp rating for
"Performance" (Input)

Provides crisp rating for
"Operation" (Input)

Sets Triangular
Membership Function

for "Performance"
Sets Triangular

Membership Function
for "Operation"

Evaluate rules strength

Sets Triangular
Membership Function
for "Compensation"

(output)

Receives crisp amount for "Compensation" (Output) using Mamdani Method's Center of Gravity (COG)
Technique of Defuzzification

Input Membership
Function

Fuzzification
Module

Rule/Knowledge
Base

Generate fuzzy sets for
output using IF-THEN

rules

Fuzzify the crisp ratings
and obtain the degree of

Membership Function

Inference
Engine

Defuzzification
ModuleCustomer

Fuzzify the crisp ratings
from the customer and

produce the fuzzy
inputs

Combine fuzzy sets of
inputs to make fuzzy
inferences using IF-

THEN rules

Fig. 3. Implementation of Fuzzy Logic inside Smart Contract which uses Triangular Membership Function in order to solve the problem of contractual
ambiguity by fuzzifying the crisp inputs provided by the customer. With the help of a rule-based system and inference engine, the customer will get the
correct amount of compensation or service credits without having to deal with the vagueness and fuzziness present in the SLA

100

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

– Compensation: {very low, low, normal, high, very
high}

• Smart Contract with 8 Descriptors (SC 3):
Finally, our third smart contract has been even further
stretched out to 8 descriptors in both inputs and outputs.
The reason we also increased the number of descriptors
in the output along with the inputs was that we did not
want to have fewer descriptors in the output compared to
the number of descriptors in the inputs. We have referred
to this smart contract as ”SC 3”. The descriptors of the
inputs and outputs for SC 3 are provided below.

– Performance: {extremely poor, very poor, poor, satis-
factory, good, very good, extremely good, excellent}

– Operation: {extremely slow, very slow, slow,
mediocre, acceptable, fast, very fast, rapid}

– Compensation: {extremely low, very low, low, insuf-
ficient, normal, high, very high, extremely high}

No hard and fast rule says anything about a specific name
should be given to a descriptor or there should be a specific
number of descriptors in the inputs and output. We have
used the aforementioned descriptors because they are suitable
for this research that involves Service Level Agreements
(SLA). Although there are various membership functions
[11] to assign membership values after the crisp ratings
are converted into linguistic descriptors, in this fuzzification
process, we have used Triangular Membership Function [12].
The membership values ranges from 0 to 1 and is denoted by
µ.
The Triangular membership function is defined as:

0

1

20 40 60 80 100

a b c

D
eg

re
e

o
f

M
em

b
er

sh
ip

x

Fig. 4. An example of a Triangular Membership Function

µ(x, a, b, c) =

0, if x < a

(x− a)/(b− a), if a <= x <= b

(c− x)/(c− b), if b < x <= c

0, if c < x

(1)

Where, µ(x, a, b, c) is the degree of membership of param-
eters a, b and c.

For example, as we can see in the sequence diagram of Fig.
3 when a customer provides the crisp ratings for Performance
and Operation, the Fuzzifier takes those crisp numbers to
convert them into the linguistic descriptors we have mentioned

earlier. For instance, if we take the case of SC 1 which
has only three linguistic descriptors when a customer rates
Performance as 40%, this crisp value will be converted into
a fuzzy descriptor. Hence, for some people, 40% might be
poor and for others, the same rating of 40% might be good
which depends on people’s experience and interpretation.

2) Rule-based System: Once, the crisp values are fuzzified
into descriptors and membership values are assigned for those
corresponding descriptors, we construct fuzzy rules in a rule-
based system that has IF, OR, AND, THEN with linguistic de-
scriptors. These rules are very much similar to the rules from
the Decision Tree. Each rule has two parts that are antecedent
and consequent. Any rule can have multiple antecedents and
consequents. For instance, there are three rules formed in
the rule-based system after the crisp inputs are fuzzified into
descriptors. Here in this instance, the descriptors are poor and
slow. The antecedent is the condition and the result is the
consequent. IF the performance is ”poor” OR operation is
”slow” is the antecedent, and THEN compensation is ”high”
is the consequent. There are n2 number of rules inside the
rule-based system, where n is the number of descriptors in
inputs. As we can see in the Fig. 5, this is the matrix of
rules for SC 1 that has 9 rules altogether because of three
descriptors for inputs in SC 1. Similarly, our SC 2 had
altogether 25 rules because five different descriptors were
assigned for each input and output. Likewise, we stored a
total of 64 rules in our SC 3 because the inputs and output
of SC 3 had eight descriptors in its inputs and output.

very
high high normal

high normal low

normal low very low

PE
RF

O
RM

AN
CE poor

good

excellent

slow
acceptable

rapid

OPERATION

x
y

Fig. 5. Matrix of 9 rules for SC 1 as SC 1 just has three descriptors for its
first input, Performance and three descriptors for its second input, Operation.

3) Inference Engine: Once the fuzzy rules are created and
stored in the rule-based system, we map the fuzzy rules into
the membership graphs of all the parameters. This means
that we map the antecedents of a rule to the consequents
of the same rule. Mapping is performed to all the rules in
the rule-based system. Once the matrix is created, then the
inference engine decides on what would the output become
when the crisp inputs are converted to the linguistic variables.
For instance, as we can see in the matrix, when Performance is
poor and Operation is slow, the Compensation is very high.
Similarly, when the Performance is excellent but Operation
is acceptable, then compensation is low. Additionally, the
Inference Engine also helps to measure the strength of the

101

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

rules and select for the final phase, defuzzification. The
membership values of the antecedents are conjoined together
with the intersection operator (finding the MIN or minimum)
since they are connected with AND in this work. If the
antecedents would be been connected with OR, then we
would have used the union operator (finding the MAX or
maximum). Once the membership values of the antecedents
are compared and the minimum values of each rule are
selected, the minimum membership value would be the unit
for measuring the strength of the rules.

4) Defuzzifier: Defuzzification is the final step of fuzzy
logic and hence the final component of our smart contract
as well. This component is responsible for making the final
decision by selecting the rule that has the highest strength.
More importantly, this component is also responsible for
finding the crisp value from the output of the aggregated
fuzzy set. From Fig. 3, we can see that when the strength
of rules is evaluated, the defuzzifier/defuzzification module
transfers the fuzzy inference results back to the crisp value.
This crisp value would be the final output. Although there
are various defuzzification techniques such as Mean of Max
method, Weighted sum method, Lambda-cut method, etc., we
have used Center of Gravity (COG) method in this work.
The COG is defined as:

X∗ = (
∑n

i=1
.xi.Ai)÷ (

∑n

i=1
.Ai) (2)

Where, X∗ is the crisp output,
∑n

i=1 is the sum over
variable’s possible values, xi is the center of an area and
Ai is the total area of the selected region.

From the sequence diagram in Fig. 3, we can also see that
the final crisp value for Compensation is produced as output
and sent back to the customer.

C. Output

Finally, the customer who provides the crisp ratings for
the two inputs to the fuzzy logic-based smart contract, i.e.,
Performance and Operation, will get a crisp result back
as Compensation. The Compensation is also measured in
percentages just like the inputs. For example, from Fig. 6, if
SC 1 is implemented, we can see when the customer provides
crisp ratings for Performance and Operation as 20% and
30% respectively if the service is poor, the customer receives
the Compensation as 60% of total expenses of his/her sub-
scription to the current service. However, when the customer
increases the crisp ratings for Performance and Operation
to 50% and 60% respectively, the customer receives the
Compensation as 26.82%. The lower the customer ratings are,
the higher the compensation is and vice-versa. Nevertheless,
we still discuss the accuracy of our defuzzification output in
all three smart contracts below in the Results section.

III. RESULTS

We have developed and tested three different types of
smart contracts with the same architecture of fuzzy logic that
we have discussed above in the Methodology section. The
only way these three smarts contracts differ is by the number
of descriptors and their corresponding membership functions
and matrix of rules. Although the employed technique of
defuzzification is the same, i.e., Center of Gravity (COG)

(a) (b)

When,
performance = 20% and

operation = 30%

compensation = 60%

When,
performance = 40% and

operation = 50%

compensation = 44.82%

When,
performance = 50% and

operation = 60%

compensation = 35.17% compensation = 26.82%

When,
performance = 80% and

operation = 90%

(c) (d) (e) (f)

Fig. 6. Performance and Operation are the inputs of the Smart Contract incorporating Fuzzy Logic with 3 descriptors for inputs and 5 descriptors for
output where Triangular MF and Center of Gravity method is used. Different series of inputs are provided to observe the varying nature of the output, i.e.
Compensation.

102

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

method, these three different kinds of smart contracts have
a different number of descriptors. The reason we developed
and tested three different kinds of smart contracts is to
successfully evaluate and analyze the performance, accuracy,
and any impact of the varying number of descriptors in
smart contracts when deployed into the Ethereum-based
Blockchain. More is explained about these smart contracts
along with their respective descriptors in detail in the
following subsections.

A. Defuzzification results from different Smart Contracts

In our SC 1, we have got different results for Compensation
when different values for inputs were provided as expected.
Since the Compensation will be higher when the customer
ratings are lower and will be lower when the customer
ratings are higher, the inputs and output have an inverse
relationship. As shown in Fig. 6 and Fig. 7, when the user
provides the crisp rating of 20% and 30% in the smart
contract for Performance and Operation respectively, it gives
us the output of 60% for Compensation. Similarly, SC 1
gives the Compensation of 44.82% when the Performance
and Operation are 40% and 60% respectively. When the
inputs for Performance and Operation are 50% and 60%
respectively, SC 1 gives us the Compensation of 35.17%.
Finally, when the inputs for Performance and Operation are
increased to 80% and 90%. the Compensation reduces to
26.82%. We can also see in Fig. 7 that the compensations
calculated by the SC 1 are decreasing when the ratings for
Performance and Operation are increasing.

60 60 59.99

44.82
39.99

35.6635.17
29.99

9.99

26.82

9.75

3.88

0

10

20

30

40

50

60

70

SC 1 with 3 Descriptors SC 2 with 5 Descriptors SC 3 with 8 DescriptorsC
O

M
P

EN
SA

TI
O

N
 (

SE
R

V
IC

E
C

R
ED

IT
)

IN

%

When Perf=20 and Oper=30 When Perf=40 and Oper=50

When Perf=50 and Oper=60 When Perf=80 and Oper=90

Fig. 7. Defuzzification of the output of three different Smart Contracts when
different values of inputs are provided.

We provided different values of ratings as inputs again
for SC 2. Although SC 2 has more number of descriptors
for Performance and Operation, i.e., five, we can see that
the Compensation is the same as 60% when the ratings are
20% and 30% respectively. However, when the ratings for
Performance and Operation are increased to 40% and 50%,
this time SC 2 gives us the Compensation of 39.99%. Simi-
larly, when the input ratings are 50% and 60% respectively,
the Compensation is 29.99%. Finally, when there are high

ratings for Performance and Operation, such as 80% and 90%
respectively, SC 2 gives us the Compensation of 9.75%.

Finally, for SC 3, we provided the same series of values of
ratings as inputs again for SC 3 as we did for SC 1 and SC 2.
From Fig. 7, we can see that when the ratings for Performance
and Operation were 20% and 30% respectively, SC 3’s output,
i.e., Compensation is 59.99%. We can observe in the bar
chart, the values for the output are decreasing when provided
the same values for inputs as SC 1 and SC 2. Similarly,
the Compensation was outputted as 35.66% when the ratings
input were increased to 40% and 50% respectively. Likewise,
when the customer ratings were increased to 50% and 60%
respectively, the Compensation fell to 9.99%. Finally, when
the customer ratings were at their highest, i.e., 80% and 90%,
the Compensation output was just 3.88%.

From the bar chart, we can see that regardless of the kind
of smart contract and the number of descriptors they have,
when the two inputs, i.e., Performance and Operation are
20% and 30% respectively, the final defuzzified crisp value
for Compensation is same or at least similar in all three smart
contracts, SC 1, SC 2 and SC 3.

0

10

20

30

40

50

60

70

2 0 , 3 0 4 0 , 5 0 5 0 , 6 0 8 0 , 9 0

C
O

M
P

EN
SA

TI
O

N
 IN

 %

SEVERAL SERIES OF RATINGS OF PERFORMANCE AND COMPENSATION (IN %)
PROVIDED TO SMART CONTRACTS

SC 1 SC 2 SC 3

Fig. 8. SC 1 provides the least realistic and accurate output whereas SC 3
with the most realistic and accurate output.

• Accuracy in the Smart Contract:
From our observations, we concluded that SC 3 with
the highest number of descriptors has the highest
accuracy compared to SC 1 and SC 2 because when
the Performance and Operation are 80% and 90%
respectively, the value of Compensation in SC 1 is
26.82% which is extremely high and unusual in real life.
However, the output from SC 3 has the most accurate
and realistic values of all defuzzified Compensation
values compared to SC 1 and SC 2.

B. Deployment Costs of different Smart Contracts

We deployed all three smart contracts in Ropsten Testnet.
We converted all ETH costs in United States Dollars (USD)
and on August 16, 2:09 AM UTC, the conversion rate
of 1 ETH was 3,315.44 USD. This data was provided by
Morningstar for Currency and Coinbase for Cryptocurrency
[13]. SC 1 had the lowest deployment cost, i.e., 14.02 USD.

103

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

35

C
O

ST
 IN

 U
S

$

SC 1 with 3 Descriptors SC 2 with 5 Descriptors SC 3 with 8 Descriptors

Fig. 9. Deployment costs of SC 1, SC 2 and SC 3 in Ropsten Ethereum
Testnet in USD.

The reason SC 1 had the lowest deployment cost was that
it was the lightest program among all smart contracts as SC
1 only had three descriptors in its inputs, Performance, and
Operation. As a result of only three descriptors, the number of
membership functions for each corresponding descriptor was
also lesser. However, SC 2 had five descriptors for both inputs
and as a result, this smart contract had more membership
functions assigned for its descriptors. Hence, the deployment
cost for SC 2 was higher than SC 1, i.e. 21.24 USD. Finally,
the highest deployment cost was for SC 3 because it had eight
descriptors for inputs, Performance, and Operation as well as
for the output, Compensation. The deployment cost for SC
3 was 30.11 USD. The deployment cost of a smart contract
depends on its size. Therefore, the larger the smart contract,
the higher the deployment cost is. In this case, the size of
the smart contract was affected by the number of descriptors
and their corresponding membership functions in the smart
contract.

Additionally, we can also observe that we have a common
ratio of 1.5 in this geometric series of deployment costs
among the three smart contracts. The deployment cost of SC
2 is 1.5 times higher than the deployment cost of SC 1 and
the same case for SC 3 and SC 2 as well. The reason we
see this almost precise ratio between the deployment cost is
the number of descriptors chosen for inputs in each smart
contract, i,e, three, five, and eight.

C. Transaction Costs of major functions used in different
Smart Contracts

We discuss the TXN costs incurred by the major four
functions used in the smart contracts below.

• Function for Performance:
This function is responsible for taking the crisp
input from the customer for rating Performance
of the company and then fuzzify the crisp input
using its membership functions depending on how many
descriptors it has. In SC 1, the TXN cost for Performance
was 1.29 USD. The TXN cost for Performance increases
to 2.13 USD in SC 2 and increases further to 2.64 USD
in SC 3. The reason TXN cost is getting higher and

0

0.5

1

1.5

2

2.5

3

3.5

SC 1 with 3 Descriptors SC 2 with 5 Descriptors SC 3 with 8 Descriptors

TX
N

 C
O

ST
 I

N
 U

S
$

Performance Operation Rules' Strength Evaluation Defuzzification

Fig. 10. TXN costs of major functions used in SC 1, SC 2 and SC 3 in
USD.

higher is due to the increasing number of descriptors
and their corresponding membership functions in smart
contracts.

• Function for Operation:
This is a similar function to Performance as Operation is
our second input. Likewise, this function is responsible
for taking the crisp input from the customer for rating
Operation of the company and then fuzzify the crisp
input using its membership functions depending on how
many descriptors it has. Hence, the TXN costs in each
smart contract for Operation is approximately the same
as Performance as we can see in Fig. 10. The TXN cost
for Operation in SC 1, SC 2, and SC 3 were 1.27 USD,
2.13 USD, and 2.75 USD respectively in an increasing
fashion.

• Function for Rules’ Strength Evaluation:
Depending on the crisp ratings given by the customer,
this function checks and selects the triggered rules in the
rule-based system by calculating the membership values
of each descriptor. Then, in the inference engine, when
two antecedents are joined together using conjunctional
operator, i.e., AND operator/MIN operator/Intersection
operator, it compares between two membership values
each time and finds the minimum value to evaluate the
strength of all selected rules. Hence, because of this
function’s complexity, the TXN cost incurred is the
highest as shown in Fig. 10 The TXN cost incurred
by the function that measures the strength of the rules
are approximately the same in all three smart contracts.
The TXN costs for SC 1, SC 2, and SC3 are 2.84 USD,
2.86 USD, and 2.90 USD respectively. Even though the
TXN cost for this function is highest in SC 3, higher in
SC 2, and lowest in SC 1, there is not much significant
difference in the TXN costs regardless of being from
different smart contracts. The reason the TXN costs
are almost similar in this case is that the number of
rules this function checks to measure their strength is
only four. Only four rules are selected for evaluation

104

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

of their strength because there are only two different
inputs. Since we only have two inputs, only four rules
are triggered and then selected from n2, where is the
number of inputs. Hence, the level of complexity of
this function regardless of having a different number of
descriptors in a different smart contract is the same.

• Function for Defuzzification:
This function is responsible for finding the crisp out-
put from the aggregated fuzzy set. The defuzzification
technique that we have used for this work is Center of
Gravity (COG) method as mentioned in the methodology
section. The TXN cost of SC 1, SC 2, and SC 3 are
0.76 USD, 0.73 USD, and 0.67 USD respectively. The
TXN cost incurred by this function is also almost exactly
similar because of the usage and implementation of the
same method across all three smart contracts.

IV. FUTURE WORK AND CONCLUSION

Our future work would be to use other defuzzification
techniques such as the Mean-Max method, Center of Sum
(COS) method, and Weighted Average method in the smart
contract and compare the accuracy of the defuzzification
with the COG method. Future work also includes comparing
the ground truth of smart contracts that implement various
defuzzification methods with the legal department of the
vendors that calculates and decides the compensation in their
SLA.

We introduced a novel idea on how we can translate a vague
legal contract by using fuzzy logic inside the smart contract
that would be smart and intelligent enough to consider various
human interpretations by taking several linguistic variables
and descriptors into account. No matter how popular a vendor
is, their SLAs can still be incomplete and ambiguous which
puts a customer into a myriad of confusion and trouble.
In this paper, we presented a fresh solution to an existing
problem of ambiguity in legal contracts by taking a real-
world legal contract and using a cheaper and faster approach,
i.e., fuzzy logic to make the Ethereum-based smart contract
smart and intelligent to decide the output based on several
sets of different inputs. We also created three different smart
contracts that employ the same logic and architecture but
have different sets of linguistic variables to evaluate the
performance, cost, and accuracy of each smart contract. The
main purpose of this paper is to study the gray areas of
natural language that create the fuzziness and vagueness in
the legal contracts and how an Ethereum-based smart contract
can be made even smarter and intelligent to easily handle this
problem of ambiguity and multiple contract interpretations.

REFERENCES

[1] S. Overby, L Greiner and L.G. Paul, ”What is an SLA?
Best practices for service-level agreements”, [Online]. Avail-
able: https://www.cio.com/article/2438284/outsourcing-sla-definitions-
and-solutions.html[Accessed: 8 Nov 2020]

[2] K. LaMance, ”What is a Contract?,” [Online]. Available:
https://www.legalmatch.com/law-library/article/what-is-a-
contract.html[Accessed: 10-Nov-2019].

[3] Customer Service Score Board [Online]. Available:
https://www.customerservicescoreboard.com/CenturyLink [Accessed:
13-Sept-2019]

[4] Best Company [Online]. Available: https://bestcompany.com/isp/blog/1-
star-isp-reviews [Accessed: 13-Sept-2019]

[5] N. Szabo, ”The idea of smart contracts,” Nick Szabo’s Papers and
Concise Tutorials, vol. 6, 1997

[6] L.A. Zadeh, ”The concept of a linguistic variable and its application to
approximate reasoning—I,” Information sciences, 1975

[7] E.H. Mamdani, ”Application of fuzzy algorithms for control of simple
dynamic plant”. Proceedings of the Institution of Electrical Engineers,
1974, 121 (12): 1585–1588. doi:10.1049/piee.1974.0328.

[8] E. J. Scheid, B. B. Rodrigues, L. Z. Granville and B. Stiller, ”En-
abling Dynamic SLA Compensation Using Blockchain-based Smart
Contracts,” 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), Arlington, VA, USA, 2019, pp. 53-61.

[9] R.B. Uriarte, H. Zhou, K. Kritikos, Z. Shi, Z. Zhao and R.D Nicola,
”Distributed service-level agreement management with smart contracts
and blockchain”, Concurrency and Computation Practice and Experi-
ence, 2020

[10] R. B. Uriarte, R. de Nicola and K. Kritikos, ”Towards Distributed
SLA Management with Smart Contracts and Blockchain,” 2018 IEEE
International Conference on Cloud Computing Technology and Sci-
ence (CloudCom), Nicosia, 2018, pp. 266-271, doi: 10.1109/Cloud-
Com2018.2018.00059.

[11] J. Zhao and B.K. Bose, ”Evaluation of membership functions for
fuzzy logic controlled induction motor drive,” IEEE 2002 28th Annual
Conference of the Industrial Electronics Society. IECON 02, 2002, pp.
229-234 vol.1, doi: 10.1109/IECON.2002.1187512.

[12] A. Jain and A. Sharma, ”Membership function formulation methods
for fuzzy logic systems: A comprehensive review,” Journal of Critical
Reviews, 2020

[13] Coinbase [Online]: Available: https://www.coinbase.com/ [Accessed:
16-Aug-2021]

[14] Spectrum SLA [Online]. Available: https://easyupload.io/6rse8f
[15] Ropsten Testnet Explorer [Online]. Available:

https://ropsten.etherscan.io/ [Accessed: 15-Nov-2020]
[16] Solidity [Online]. Available: https://docs.soliditylang.org/en/v0.4.24/

[Accessed: 19-Sept-2020]
[17] Remix Ethereum IDE [Online]. Available:

https://remix.ethereum.org/#optimize=false&runs=200&evmVersion=
null& version=soljson-v0.7.4+commit.3f05b770.js [Accessed: 19-Sept-
2020]

[18] Metamask Crypto Wallet [Online]. Available: https://metamask.io/ [Ac-
cessed: 25-Nov-2020]

[19] Truffle [Online]. Available: https://www.trufflesuite.com/ [Accessed:
15-Sept-2020]

[20] K. Upadhyay, R. Dantu, Z. Zaccagni and S. Badruddoja, ”Is Your Legal
Contract Ambiguous? Convert to a Smart Legal Contract,” 2020 IEEE
International Conference on Blockchain (Blockchain), 2020, pp. 273-
280, doi: 10.1109/Blockchain50366.2020.00041.

[21] S. Badruddoja, R. Dantu, L. Widick, Z. Zaccagni and K. Upad-
hyay, ”Integrating DOTS With Blockchain Can Secure Massive IoT
Sensors,” 2020 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2020, pp. 937-946, doi:
10.1109/IPDPSW50202.2020.00156.

[22] A. Salau, R. Dantu and K. Upadhyay, ”Data Cooperatives
for Neighborhood Watch,” 2021 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1-9, doi:
10.1109/ICBC51069.2021.9461056.

[23] S. Badruddoja, R. Dantu, Y. He, K. Upadhayay and M. Thompson,
”Making Smart Contracts Smarter,” 2021 IEEE International Confer-
ence on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1-3, doi:
10.1109/ICBC51069.2021.9461148.

[24] R. Chataut and R. Akl, ”Optimal pilot reuse factor based on user en-
vironments in 5G Massive MIMO,” 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC), Las Vegas,
NV, 2018, pp. 845-851.

[25] S. Nakamoto. (2017). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[26] K. Gidney, “Ambiguity is the killer of smart contracts
-,” Enterprise Times, 17-Jul-2018. [Online]. Available:
https://www.enterprisetimes.co.uk/2018/07/18/ambiguity-is-the-killer-
of-smart-contracts/. [Accessed: 23-Feb-2020].

105

Authorized licensed use limited to: University of North Texas. Downloaded on October 11,2022 at 20:48:09 UTC from IEEE Xplore. Restrictions apply.

