
CMCAP: Ephemeral Sandboxes for Adaptive Access Control
Theogene Hakiza Bucuti

Department of Computer Science and
Engineering

University of North Texas

Ram Dantu
Department of Computer Science and

Engineering
University of North Texas

Kirill Morozov
Department of Computer Science and

Engineering
University of North Texas

ABSTRACT
We present CMCAP (context-mapped capabilities), a decentralized
mechanism for specifying and enforcing adaptive access control
policies for resource-centric security. Policies in CMCAP express
runtime constraints defined as containment domains with context-
mapped capabilities, and ephemeral sandboxes for dynamically
enforcing desired information flow properties while preserving
functional correctness for the sandboxed programs. CMCAP is de-
signed to remediate DAC’s weakness and address the inflexibility
that makes current MAC frameworks impractical to the common
user. We use a Linux-based implementation of CMCAP to demon-
strate how a program’s dynamic profile is used for access control
and intrusion prevention.

CCS CONCEPTS
• Security and privacy→ Access control; Information flow con-
trol.

KEYWORDS
adaptive access control, runtime containment, intrusion prevention,
ephemeral sandboxes, information flow control

ACM Reference Format:
Theogene Hakiza Bucuti, Ram Dantu, and Kirill Morozov. 2019. CMCAP:
Ephemeral Sandboxes for Adaptive Access Control. In The 24th ACM Sym-
posium on Access Control Models and Technologies (SACMAT ’19), June 3–
6, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3322431.3325414

1 INTRODUCTION
Access control-based intrusion prevention is a mechanism that
restricts programs’ ambient permissions to prevent unexpected
effects when processing untrusted input. It reinforces system se-
curity with fine-grained policies to remediate the excessive per-
missiveness in traditional access control where exploitable bugs in
running programs can give remote attackers the effective user’s
full permissions to local resources. Sound implementations of the
mechanism have been integrated in contemporary operating sys-
tems in the form of mandatory access control (MAC), system call
filtering, and sandboxes. However, despite the common availability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6753-0/19/06. . . $15.00
https://doi.org/10.1145/3322431.3325414

of current state-of-the-art protection mechanisms in today’s oper-
ating systems (such as SELinux [9] and AppArmor [2] on Linux),
their adoption remains impractical to the common user because of
the level of technical expertise required to make them work.

The inflexibility of common MAC implementations is rooted
in expecting users to enforce and maintain fine-grained policies
against running programs. The expectation has two main flaws:
(1) application developers often lack a “security first” mindset (or
even a reasonable interest in system security) when developing
programs, and (2) crafting security policies as patches to insecure
programs results in inconsistencies due to uncoordinated updates
and discrepancies between a program’s functional requirements,
its security logic, and varying system security requirements.

Notable approaches to avoid the dual coding problem in MAC
frameworks include the enforcement of the least privilege principle
from within the application. Capability systems such as FreeBSD’s
Capsicum [7, 14] and Linux’ Seccomp allow programmers to reduce
the attack surface in their applications by invoking security-specific
system calls in their applications to restrict permissible capabilities
at runtime. Information flow-based mechanisms like FlumeOS [10]
also allow converting programs into security-aware components to
minimize system exposure to untrusted code. Both approaches are
only effective if applications can be rewritten to fit a given security
model, and they complicate policy analysis and maintenance for
security administrators [1]. Our approach is to focus on what a
security policy protects (system objects) while supporting existing
programs in their current form.

CMCAP is an application containment framework based on the
principle of decentralized specification and adaptive enforcement
of resource-centric access control policies. CMCAP allows the user
to group system resources into custom containment domains based
on security preferences. Each domain specifies operational contexts
determining access modes for protected resources, and hierarchical
extensions to existing policies do not require elevated privileges
when a derived policy is less permissive than its parent policy.
CMCAP’s deductive system governs domain transitions based on a
program’s runtime profile, providing a means to adaptively isolate
programs or groups of related programs into restricted namespaces
where potential damage is contained. Since security policies are
formulated in terms of protected objects rather than the agents
accessing them, it is easier for the user to express and verify a
desired safety property for a resource of interest regardless of which
programs will run on the system. This reduces complexity in policy
development or verification, and eliminates inconsistencies caused
by program-targeted policies when programs and policies evolve
independently.

We implemented CMCAP for Linux based on the LSM interface to
take advantage of the already existing security hooks in the kernel,
and used it for performance evaluation. Ephemeral sandboxes were

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

207

https://doi.org/10.1145/3322431.3325414
https://doi.org/10.1145/3322431.3325414
https://doi.org/10.1145/3322431.3325414

designed by combining Linux namespaces and a pseudo-filesystem.
They are generated when access to a virtualized resource is received,
and do not persist past the execution context of the sandboxed
program’s instance.

This paper’s contributions include:
• The specification of resource-centric policies for access con-
trol and information flow tracking on filesystem objects.
• The design of ephemeral sandboxes for automatically isolat-
ing program instances whose runtime characteristics contain
a forbidden information flow.
• The implementation of CMCAP on Linux as a security mod-
ule in the kernel, and a companion userspace toolsuite for
specifying and inspecting CMCAP policies using logical
queries.

The rest of the paper is organized as follows: Section 2 presents
a conceptual design for resource-centric policies in CMCAP. A
summary of access control semantics in CMCAP is presented in
Section 3. A system design and performance evaluation of a Linux-
based implementation of CMCAP are demonstrated in Section 4 ,
followed by a discussion of related work in Section 5. Concluding
notes for future development precede the references section at the
end.

2 RESOURCE-CENTRIC POLICIES FOR
INTRUSION PREVENTION

CMCAP policies create containment domains which define infor-
mation flow restrictions for groups of passive objects such as files,
sockets, and memory segments. Running programs are active ob-
jects that may transition into different domains based on their
runtime characteristics. When considering access requests, a pro-
gram’s history determines if the access would not violate the policy
that applies to the requested resource. Therefore since policies are
resource-centric, a program’s capabilities change dynamically.

2.1 Context-mapped capabilities
Definition 1. An operational context is a containment bound-

ary for the information content in system objects. It serves as a doc-
umentation of provenance for data in storage, and an estimation of
information propagation in running programs.

Operational contexts can be regarded as users in a DAC model,
except that in CMCAP programs transition between contexts as
required by the policies that apply to resources they are requesting.
The following operational contexts are basic in CMCAP: ‘localCTX’
(for flows from and into system-local objects), ‘remoteCTX’ (for
anything not considered system-local: network, external media,...).
Non-basic contexts can be defined as part of a policy if necessary,
and their meanings depend on restrictions applied to them by the
policy.

Definition 2. A CMCAP capability is a (P, C)-tuple where P
is a permission and C is an operational context.

Basic permissions determine the direction of information flow
(READ, WRITE) while contexts describe containment boundaries
(system-local, network/external, program-private). The capabili-
ties are “context-mapped” because a program’s operational context

determines which permissions can be granted to it. In addition to
the basic permissions (READ, WRITE), CMCAP supports a virtual
WRITE permission which differs from the normal WRITE in that
its resulting information content is not persistent. We will shorten
the mentioned permissions as ‘r’, ‘w’, and ‘w/#’, respectively from
now on when presenting policy sketches.

Definition 3. A containment domain is a collection of resources
with similar information flow restrictions.

For policy visualization purposes, a containment domain is a
directory-like structure in CMCAP: it is specified in terms of re-
sources it protects and capabilities that apply to them. A domain’s
capabilities form an immutable protection state for any resource
covered by the domain.

1 {
2 homeDMN : {
3 o b j e c t s : [" / home "] ,
4 p o l i c y : [
5 (r , loca lCTX) , (w, loca lCTX) , (r , remoteCTX)
6]
7 }
8 }

Listing 1: Example domain policy

Consider the containment domain defined in Listing 1: it covers
all files under the “/home” directory. Programs with a ‘localCTX’
operational context may read from or write to files in the domain,
while those with a ‘remoteCTX’ context may only read. The domain
also forbids transitions that would allow a program to overwrite
files in the “/home” directory with content from the internet or
external media.

2.2 Policy expression and hierarchical
composition

CMCAP was designed to scale well for resource groups. Since CM-
CAP policies apply to containment domains, resources with the
same information flow restrictions can be placed/grouped into the
same domain with appropriate access control rules to protect them
against unwanted access. Expressing containment rules for a re-
source therefore requires “mounting” the resource in a containment
domain that has the appropriate context-mapped capabilities.

Definition 4. Let capsetx be the set of capabilities allowed in
domain x, and objsetx the set of object handles enumerated in domain
x’s manifest.
policy-equivalence : Domains dom1 and dom2 are considered

policy-equivalent if capsetdom1 = capsetdom2.
permissiveness : Domain dom1 is considered more permissive

than dom2 if capsetdom1 ⊃ capsetdom2.
policy coverage : Let dirx be the set of objects located under object

handle x following a hierarchical object handle resolution (in
the same fashion as UNIX pathwalking). The policy coverage
of domain domX, denoted aspolcdomX , is the set of objects char-
acterized with polcdomX = {{x} ∪ dirx | x ∈ objsetdomX }.

policy composition : Given two domains A and B such thatpolcA ⊃
polcB , domain A is said to be B’s parent domain. In that case
domain B is considered an extension of domain A if B is less
permissive than A, otherwise B is invalid.

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

208

policy conflict : There is a policy conflict between domains A
and B if (polcA ∩polcB , ∅) ∧ (capsetA △ capsetB , ∅), with
△ denoting the set difference.

Definition 5. A system’s effective policy is the interaction
of all the activated domain policies, taking into account composition
and possible conflicts.

Policy resolution for a resource follows conventional path res-
olution on UNIX, allowing hierarchical policy composition when
restricting subtrees of a given directory. In case of conflict between
two domains, the least permissive domain takes precedence in path
resolution for common objects. Illustrations for policy composition
and conflict are given in listing 2.

1 {
2 domA : {
3 o b j e c t s : [" / a "] ,
4 p o l i c y : [(r , loca lCTX) , (w, loca lCTX)]
5 } ,
6 domB : {
7 o b j e c t s : [" / a / b "] ,
8 p o l i c y : [(r , loca lCTX) , (w, loca lCTX)]
9 } ,
10 domC : {
11 o b j e c t s : [" / a / b / c "] ,
12 p o l i c y : [(r , loca lCTX)]
13 } ,
14 domD : {
15 o b j e c t s : [" / a / b " , " / b " , " / c "] ,
16 p o l i c y : [(r , loca lCTX) , (w, remoteCTX)]
17 }
18 }
19 " " "
20 (1) COMPOSITION : domC ex t end s domA :
21 => ' / a / b / x ' would be covered by domA ,
22 => ' / a / b / c / d ' would be covered by domC .
23 (2) CONFLICT : domD c o n f l i c t s with pa r en t domain :
24 => domA f o r b i d s remoteCTX from wr i t i n g to ' / a ' .
25 " " "

Listing 2: Policy resolution: composition vs.
conflict

2.3 Transition rules and safety verification
In CMCAP, access control queries are formulated as reachability
proofs in an information flow graph determined by the system’s
effective security policy.

Definition 6. Given a CMCAP capabilityx = (p, c), letperm(x) =
p be the permission encoded inx and ctx(x) = c its operational context.
For a pair of domains d1 and d2, f lowd1,d2 = {(c1, c2) ∈ capsetd1 ×
capsetd2 | ctx(c1) = ctx(c2) ∧ perm(c1) = READ ∧ perm(c2) =
WRITE}.

Definition 7. Let P be the set of containment domains that con-
stitute the effective policy. P’s policy graph is a graphGP = (V ,E),
where V = {(d, c) | d ∈ P ∧ c ∈ capsetd } and E = {(u,v) | u =
(d1, c1) ∧v = (d2, c2) ∧ (c1 = c2 ∨ f lowd1,d2 , ∅)}. Paths inGP are
called state transitions.

For any given policy, a corresponding state transition graph ex-
presses the system’s invariant protection state. Verification for a
safety property in the policy can thus be carried out by considering
the policy’s graph and proving the absence of paths that constitute
a violation of the given property.

Definition 8. A safety property expression is the negation of
forbidden state transitions in a policy graph.

Figure 1 illustrates a state transition graph representing a given
CMCAP policy. Given a program in any state, its possible capabil-
ities can be enumerated by computing all reachable nodes from
its current state. Under the given policy, for instance, a program
must transition into a state that has the (r, localCTX) capability
in order to read files in the docsDMN domain, transition into the
(w, remoteCTX) state to send data to the network, etc. The policy
in Figure 1 therefore does not allow a program to write to files un-
der “/home/alice/docs” after reading network data (here generically
represented as “network/**”).

Figure 1: Reference CMCAP policy (a) and correspond-
ing state transition graph (b)

1 {
2 docsDMN : {
3 o b j e c t s : [" / home / a l i c e / docs "] ,
4 p o l i c y : [
5 (r , loca lCTX) , (w, loca lCTX) ,
6 (r , remoteCTX)
7]
8 } ,
9 networkDMN : {
10 o b j e c t s : [" network / ∗ ∗ "] ,
11 p o l i c y : [
12 (r , remoteCTX) , (w, remoteCTX)
13]
14 }
15 }

(a) (Listing)-Reference CMCAP policy

(b) State transition graph

2.4 Ephemeral sandboxes
In cases where denying access to certain resources would cause the
offending program to crash, CMCAP uses the virtualWRITE permis-
sion to divert the program’s side-effects to a sandbox. Moving a pro-
gram into a sandbox is better than terminating it when it is prefer-
able to preserve the program’s runtime correctness while respecting
the system’s policy. Sandboxes under CMCAP are ephemeral in

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

209

that they are automatically generated when needed to provide vir-
tualized resources to a program and may not persist beyond the
program’s execution context. A containment domain provides sup-
port for ephemeral sandboxes by allowing the ‘w/#’ (virtual WRITE)
permission to files that ought to be virtualized for a given context.

3 ACCESS CONTROL SEMANTICS UNDER
CMCAP

3.1 Permitted capabilities for a running
program

Let Dom be the set of security domains, Ctx the set of opera-
tional contexts, and Perm the set of permissions. Moreover, let
exec_dom_ctx(p,d, c) characterise a state in which c ∈ Ctx is at-
tached to process p in domain d ∈ Dom.

Definition 9. A context map for a protected object o is a condi-
tion expressed as follows:

ctx_map(D,C,R,o) ←

∃(D,C,R) ∈ Dom ×Ctx × Perm,o ∈ objsetD ∧ (R,C) ∈ capsetD .
Being a static constraint, an object’s context map can be deter-

mined by enumeration in the effective policy.

Definition 10. For a requested permission r, let p be the requesting
process and o the target object.
explicitly-permitted capability :

An explicitly-permitted capability encodes a state char-
acterised as follows:

ctx_cap(p,o, r) ← ctx_map(D,C, r ,o)∧exec_dom_ctx(p,D,C).

virtually-permitted capability : If r is a virtual permission, the
encoded state is a virtually-permitted capability, char-
acterised as sandbox(p,o, r).

Processp acquires permission r on object o ifp assumes a context
that allows permission r in a domain that provides access to object
o. The necessary precondition is expressed as

pre_auth(p,o, r) ← ctx_cap(p,o, r) ∨ sandbox(p,o, r)

A permitted capability is therefore a state whose reachability de-
pends on the current state and transition rules in the effective
policy.

3.2 State transition schemas
State transitions in CMCAP are induced by actions that encode a
binary relation between the current state and its successor state.
Actions are state bindings of parameterized operators with the fol-
lowing schema :
action(op(params), e f f ects(op,params)) ← precond(op,params),
op(params) being an instantiated action produced by binding pa-
rameters params to operator op.
The action’s effects describe an atomic transition when the action
succeeds. Its preconditions describe constraints that must be satis-
fied in the current state for the action to succeed.
Let precond be an action’s preconditions, effects the list of fluents
made true by the action, and negated_effects the list of fluents
deleted by the action.

Definition 11. If Si is the current state and precond ⊂ Si , the
special operator apply induces a transition of the system into Si+1,
defined as follows:

Si −−−−−−−−−−−−−→
apply(action)

(Si ∪ e f f ects) \ neдated_e f f ects

The apply operator is a no-op if precond 1 Si .

Definition 12. Given an initial state Si and a goal state Sn , a plan
is a sequence of transitions (Si+k −−−−−−−−−−−−−−→

apply(actionk)
Si+k+1)0≤k≤n−i .

The plan need not be unique. Goal strategies beyond proving the
existence of “some” valid plan (for example heuristics for producing
the best plan) are beyond this article’s scope.

3.3 Access control queries
An access control question is formulated as a logic program, with
the access request stated as a goal whose reachability translates
into an approval. Specifically, the goal consists of the predicate
pre_auth(p,o, r) in section 3.1.
To model access control decisions, CMCAP defines the following
goals:

(1) acq_read(p,o) ← pre_auth(p,o, cap_READ), and
(2) acq_write(p,o) ← pre_auth(p,o, cap_WRITE).

4 CMCAP-LINUX: IMPLEMENTATION AND
PRELIMINARY EVALUATION

4.1 Linux integration
CMCAP-Linux is an implementation of CMCAP based on the Linux
Security Modules (LSM). The LSM framework [15] was chosen be-
cause many security mechanisms on Linux already use it to control
operations on kernel objects. CMCAP-Linux can be configured as
the default security module in the kernel build configuration, or
enabled at boot time with the “security=cmcap” boot parameter.
CMCAP-Linux is composed of two main parts: the LSM interface
which is an observation point for system calls, and the CMCAP
resolution engine which is responsible for tracking information
flows and making access control decisions. A third component
implements ephemeral sandboxes based on Linux namespaces.

4.1.1 Observation points. The LSM framework provides an inter-
face for security modules to manage security fields on kernel objects
and perform access control. CMCAP-Linux uses LSM hooks as ob-
servation points for system calls, which it translates into their cor-
responding information flow categories (READ, WRITE). For identi-
fying file, pipe, and socket objects, CMCAP descriptors are attached
to the security fields in both struct file and struct inode fields
of the corresponding objects. The LSM provides a security field in
struct msg_msg for IPCmessages, and one in struct msg_queue’s
perm (struct kern_ipc_perm) field for message queues. CMCAP
descriptors will be attached to those fields in order to identify IPC
objects. On program execution, a descriptor is attached to the pro-
gram’s struct cred field (inside struct linux_binprm). CMCAP
descriptors are initialized with security contexts derived from the
target objects’ origin. For open files, the file’s path is used to de-
termine its containment domain according to the policy in effect.
Socket and pipe objects are also identified the same way thanks

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

210

to the sockfs and pipefs pseudo-filesystems. On program execu-
tion, the program’s credentials are initialized with context from
its source file, later adjusted with context from its interpreter (the
program that called exec() to start the new program). Processes in
the program inherit its credentials in their struct task_struct’s
security field.

Access control decisions are made based on the requesting pro-
gram’s CMCAP descriptor, the target object’s CMCAP descriptor,
and the type of information flow derived from the requested opera-
tion. A list of operations mediated by CMCAP-Linux is presented
in Table 1.

Table 1: Mediated system calls in CMCAP-Linux

Object Operations
File read, write, rename, symlink, sendfile, mmap, ioctl, fcntl, flock

Socket create, read, write

Pipe, anonymous inode create, read, write, splice, vmsplice

Shared memory segment shmget, shmat, shmctl

IPC messages and queues msgget, msgsnd, msgrcv, msgctl

Process exec, ptrace, prctl

4.1.2 Ephemeral sandboxes. On Linux, namespaces constrain a
process’ view of the execution context, and their manipulation
allows disassociating a process from the rest of its initial group.
CMCAP uses the following namespaces when creating ephemeral
sandboxes:
IPC namespace : to isolate the process’ view of SysV IPC and

POSIX messages queues;
Mount namespace : to hide changes to the file system, mounts,

and open file descriptor tables;
UTS namespace : to hide changes to the hostname and NIS do-

main name.
The implemented isolation allows mapping virtual resources in
a program’s namespaces without affecting the rest of the system.
Specifically, it prevents the sandboxed program from modifying
the protected resources while at the same time letting the program
function as it normally would. Resource emulation is implemented
by making changes to a program’s mount namespace to replace file
system entries for the virtualized files by a context-private tempo-
rary file. The temporary file overlays the protected file and is only
visible to programs in the same operational context. The overlay
files are created using a pseudo-filesystem (cmcapfs) that can be
configured to save written data to a memory backed store to pro-
vide consistent READs for the duration of the sandboxed program’s
execution context or simply divert file WRITEs to ‘/dev/null’ if
consistency is not required.

4.1.3 Dynamic application containment example. Based on the ref-
erence policy in Figure 1, the following runs of the same program
will result in different runtime profiles:

(1) ping −c 1 127.0.0.1 2>> /home/alice/docs/ping. log : access denied.
(2) ping −h 2>> /home/alice/docs/ping. log : outputwritten to ping.log.

In (1), the file’s domain forbids network-originated content. Note
that (2) succeeds because the “ping -h” command simply prints
documentation, which does not involve network interaction.

4.2 Performance Considerations
A brief measurement of CMCAP’s performance overhead was con-
ducted, focusing on operations that involve creating or updating
CMCAP security descriptors. The micro-benchmark in Figure 3
is divided into three categories, all run in tight loops: (1) open/-
close operations to measure the overhead of the “open” system
call, (2) writing a 1M file using a 1K buffer size to measure read-
/write throughput, and (3) fork+execve operations to measure the
overhead of starting new programs. The number of operations was
varied per group for timing purposes: 10 million operations for
category (1), 10,000 operations for (2) and (3). 10 iterations were
averaged for each category.

For performance results in this section, CMCAP-Linux was built
and tested on Linux 4.4.6 booted on an Intel Core2 Duo E8400
running at 3GHz with 8GB of RAM. The benchmark was run on 3
configurations: DAC, CMCAP-Linux, and AppArmor. AppArmor
was run in complain mode, with policies generated using its profile
generation utility (aa-genprof).

open/close read/write: 1MB/1KB fork+execve
0

10

20

30

40

50

60

70

sy
st

em
ti

m
e

(s
ec

on
ds

)

DAC
CMCAP-Linux
AppArmor

0

1

Figure 3: Resource access overhead: CMCAP_Linux vs. DAC
vs. AppArmor

CMCAP’s resource access mediation overhead is illustrated by
the read/write results in Figure 3: while DAC and AppArmor make
access control decisions once per resource (on open), CMCAP
must update security descriptors following each information flow-
related operation (read, write). In the remaining categories (1 and 3),
CMCAP-Linux significantly outperforms AppArmor. The observed
performance degradation for AppArmor is due in part to inefficient
policies generated by its policy generation tool (the length of a
profile generated by the tool grows with a program’s execution
path).

5 RELATEDWORK
5.1 Modeling information flows with logic

programs
Constraint logic programming is used in [1] to specify and reason
about temporal RBAC policies. The expressiveness and flexibility
of logic programming are a fundamental inspiration to CMCAP-
Linux’s userspace policy analysis tools.

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

211

A threat response system based on contextual security policies
is described by Hervé Debar et al. [8]. A common characteristic be-
tween [8] and CMCAP is the application of contexts to dynamically
model updates to security policies. Threat characterisation is done
in [8] by analyzing known vulnerabilities and attack scenarios in
order to define threat contexts for use in policy specification. In
contrast, CMCAP policies assert permissions for defined contexts.

The authors in [3, 11, 12] use logic programs to model and ana-
lyze dynamic access control systems for verifying security proper-
ties and detecting explicit information-flow vulnerabilities. CMCAP
is similar in that it models access control on containment domains
which can be compared to protection boundaries across which
flows are considered in [12]. Similarly, access control semantics in
CMCAP is defined with an extended situation calculus interpreted
as a logic program and query inference is used to prove reachability
given an access control question expressed as a goal state. As an
access control system, however, CMCAP is an implementation of
the logic model as a policy enforcement point in the operating
system.

5.2 Information flow tracking
The work in [6] uses a compiler-assisted static analysis to verify
the reliability of information flow control (IFC) systems built on
the LSM framework. The study highlights flaws in LSM-based IFC
systems due to race conditions and incomplete tracking of indirect
flows. A race condition-free implementation designed to address
the highlighted flaws is demonstrated in RfBlare [5] by the authors.
Similarly to previous IFC systems such as Blare [4], Laminar [13],
and FlumeOS [10], the study in [5, 6] uses a stateful, temporal
characterization of information flow-generating events to derive
and validate resulting states and their compliance with a high-level
information flow policy. Casting an access control decision as a
logic programmakes CMCAP implicitly stateful and temporal. For a
precise information flow tracking, however, future implementations
of CMCAP will require a framework adapted for that purpose.

6 CONCLUSION
Program-targeted mechanisms for fine-grained access control are
inflexible. Their main usability challenges are that (1) understand-
ing security properties for a single resource requires scanning more
than one program policy, (2) specifying a fine-grained policy re-
quires a high technical understanding of the targeted program, and
(3) a long-term coordination is required to maintain consistency
between programs and security policies. These challenges compli-
cate security configuration and auditing, often resulting in common
users relaxing security to run programs frictionlessly.

CMCAP proposes an adaptive mechanism for specifying and
enforcing access control policies that dynamically reshape pro-
grams’ capabilities based on their runtime profiles. It addresses
the highlighted challenges by allowing users to specify policies for
protected resources regardless of running programs. Virtual capa-
bilities are provided to automatically sandbox offending programs
when runtime compatibility is required.

Future implementations of CMCAP will focus on a more precise
information tracking, and integration in more operating systems.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under awards 1241768 and 1637291.

REFERENCES
[1] Steve Barker and Peter J. Stuckey. 2003. Flexible Access Control Policy Specifica-

tion with Constraint Logic Programming. ACM Trans. Inf. Syst. Secur. 6, 4 (Nov.
2003), 501–546. https://doi.org/10.1145/950191.950194

[2] Mick Bauer. 2006. Paranoid Penguin: An Introduction to Novell AppArmor. Linux
J. 2006, 148 (Aug. 2006), 13–. http://dl.acm.org/citation.cfm?id=1149826.1149839

[3] Avik Chaudhuri, Prasad Naldurg, Sriram K. Rajamani, G. Ramalingam, and Laksh-
misubrahmanyam Velaga. 2008. EON: Modeling and Analyzing Dynamic Access
Control Systems with Logic Programs. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS ’08). ACM, New York, NY, USA,
381–390. https://doi.org/10.1145/1455770.1455818

[4] Laurent George, Valérie Viet Triem Tong, and Ludovic Mé. 2009. Blare Tools:
A Policy-Based Intrusion Detection System Automatically Set by the Security
Policy. In Recent Advances in Intrusion Detection, Engin Kirda, Somesh Jha, and
Davide Balzarotti (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 355–356.

[5] Laurent Georget, Mathieu Jaume, Guillaume Piolle, Frédéric Tronel, and Valérie
Viet TriemTong. 2017. Information FlowTracking for LinuxHandling Concurrent
System Calls and Shared Memory. In Software Engineering and Formal Methods,
Alessandro Cimatti and Marjan Sirjani (Eds.). Springer International Publishing,
Cham, 1–16.

[6] Laurent Georget, Mathieu Jaume, Frédéric Tronel, Guillaume Piolle, and Valérie
Viet Triem Tong. 2017. Verifying the Reliability of Operating System-Level
Information Flow Control Systems in Linux. In 2017 IEEE/ACM 5th International
FME Workshop on Formal Methods in Software Engineering (FormaliSE). 10–16.
https://doi.org/10.1109/FormaliSE.2017.1

[7] William R. Harris, Somesh Jha, Thomas Reps, Jonathan Anderson, and Robert
N. M. Watson. 2013. Declarative, Temporal, and Practical Programming with
Capabilities. In 2013 IEEE Symposium on Security and Privacy. 18–32. https:
//doi.org/10.1109/SP.2013.11

[8] Frédéric Cuppens Nora Cuppens-Boulahia Hervé Debar, Yohann Thomas. 2008.
Response: bridging the link between intrusion detection alerts and security policies.
Advances in Information Security, Vol. 38. Springer-Verlag, New York, NY.

[9] Boniface Hicks, Sandra Rueda, Luke St.Clair, Trent Jaeger, and Patrick McDaniel.
2010. A Logical Specification and Analysis for SELinux MLS Policy. ACM Trans.
Inf. Syst. Secur. 13, 3, Article 26 (July 2010), 31 pages. https://doi.org/10.1145/
1805974.1805982

[10] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard
OS Abstractions. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 321–334. https:
//doi.org/10.1145/1323293.1294293

[11] Prasad Naldurg and Raghavendra K.R. 2011. SEAL: A Logic Programming Frame-
work for Specifying and Verifying Access Control Models. In Proceedings of the
16th ACM Symposium on Access Control Models and Technologies (SACMAT ’11).
ACM, New York, NY, USA, 83–92. https://doi.org/10.1145/1998441.1998454

[12] Prasad Naldurg, Stefan Schwoon, Sriram Rajamani, and John Lambert. 2006.
NETRA:: Seeing Through Access Control. In Proceedings of the Fourth ACM
Workshop on Formal Methods in Security (FMSE ’06). ACM, New York, NY, USA,
55–66. https://doi.org/10.1145/1180337.1180343

[13] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. 2009. Laminar: Practical Fine-grained Decentralized Information Flow
Control. SIGPLAN Not. 44, 6 (June 2009), 63–74. https://doi.org/10.1145/1543135.
1542484

[14] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 2010.
Capsicum: practical capabilities for UNIX. In Proceedings of the 19th USENIX Se-
curity Symposium. http://www.cl.cam.ac.uk/research/security/capsicum/papers/
2010usenix-security-capsicum-website.pdf

[15] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. 2002. Linux Security Modules: General Security Support for the Linux
Kernel. In Proceedings of the 11th USENIX Security Symposium. USENIX Associa-
tion, Berkeley, CA, USA, 17–31. http://dl.acm.org/citation.cfm?id=647253.720287

Session: Models and Emerging Applications SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

212

https://doi.org/10.1145/950191.950194
http://dl.acm.org/citation.cfm?id=1149826.1149839
https://doi.org/10.1145/1455770.1455818
https://doi.org/10.1109/FormaliSE.2017.1
https://doi.org/10.1109/SP.2013.11
https://doi.org/10.1109/SP.2013.11
https://doi.org/10.1145/1805974.1805982
https://doi.org/10.1145/1805974.1805982
https://doi.org/10.1145/1323293.1294293
https://doi.org/10.1145/1323293.1294293
https://doi.org/10.1145/1998441.1998454
https://doi.org/10.1145/1180337.1180343
https://doi.org/10.1145/1543135.1542484
https://doi.org/10.1145/1543135.1542484
http://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-capsicum-website.pdf
http://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-capsicum-website.pdf
http://dl.acm.org/citation.cfm?id=647253.720287

	Abstract
	1 Introduction
	2 Resource-centric policies for intrusion prevention
	2.1 Context-mapped capabilities
	2.2 Policy expression and hierarchical composition
	2.3 Transition rules and safety verification
	2.4 Ephemeral sandboxes

	3 Access control semantics under CMCAP
	3.1 Permitted capabilities for a running program
	3.2 State transition schemas
	3.3 Access control queries

	4 CMCAP-Linux: implementation and preliminary evaluation
	4.1 Linux integration
	4.2 Performance Considerations

	5 Related work
	5.1 Modeling information flows with logic programs
	5.2 Information flow tracking

	6 Conclusion
	Acknowledgments
	References

